Suppr超能文献

基于家族史和常见遗传变异的风险预测算法:在前列腺癌中的应用及其潜在的临床影响。

A risk prediction algorithm based on family history and common genetic variants: application to prostate cancer with potential clinical impact.

机构信息

Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.

出版信息

Genet Epidemiol. 2011 Sep;35(6):549-56. doi: 10.1002/gepi.20605. Epub 2011 Jul 18.

Abstract

Genome wide association studies have identified several single nucleotide polymorphisms (SNPs) that are independently associated with small increments in risk of prostate cancer, opening up the possibility for using such variants in risk prediction. Using segregation analysis of population-based samples of 4,390 families of prostate cancer patients from the UK and Australia, and assuming all familial aggregation has genetic causes, we previously found that the best model for the genetic susceptibility to prostate cancer was a mixed model of inheritance that included both a recessive major gene component and a polygenic component (P) that represents the effect of a large number of genetic variants each of small effect, where . Based on published studies of 26 SNPs that are currently known to be associated with prostate cancer, we have extended our model to incorporate these SNPs by decomposing the polygenic component into two parts: a polygenic component due to the known susceptibility SNPs, , and the residual polygenic component due to the postulated but as yet unknown genetic variants, . The resulting algorithm can be used for predicting the probability of developing prostate cancer in the future based on both SNP profiles and explicit family history information. This approach can be applied to other diseases for which population-based family data and established risk variants exist.

摘要

全基因组关联研究已经确定了几个单核苷酸多态性(SNPs),它们与前列腺癌风险的微小增加独立相关,为使用这些变体进行风险预测开辟了可能性。我们使用来自英国和澳大利亚的 4390 个前列腺癌患者家系的基于人群的样本进行分离分析,并假设所有家族聚集都有遗传原因,我们之前发现,用于前列腺癌遗传易感性的最佳模型是一种混合遗传模型,其中包括隐性主要基因成分和多基因成分(P),代表大量遗传变异的效应,每个遗传变异的效应都很小,其中 。基于目前已知与前列腺癌相关的 26 个 SNP 的已发表研究,我们通过将多基因成分分解为两部分,将我们的模型扩展到包含这些 SNP:一部分是由于已知易感性 SNP 引起的多基因成分 ,另一部分是由于假定但尚未确定的遗传变异引起的剩余多基因成分 。由此产生的算法可用于根据 SNP 谱和明确的家族史信息预测未来发生前列腺癌的概率。这种方法可应用于存在基于人群的家族数据和已建立的风险变异的其他疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b49/3950816/a143b7f4c110/nihms305269f1.jpg

相似文献

引用本文的文献

8
Genetic predisposition to prostate cancer: an update.遗传性前列腺癌易感性:最新研究进展。
Fam Cancer. 2022 Jan;21(1):101-114. doi: 10.1007/s10689-021-00227-3. Epub 2021 Jan 24.

本文引用的文献

5
6
Mortality results from a randomized prostate-cancer screening trial.一项前列腺癌随机筛查试验的死亡率结果。
N Engl J Med. 2009 Mar 26;360(13):1310-9. doi: 10.1056/NEJMoa0810696. Epub 2009 Mar 18.
7
Prostate cancer genomics: towards a new understanding.前列腺癌基因组学:迈向新的认知
Nat Rev Genet. 2009 Feb;10(2):77-82. doi: 10.1038/nrg2507. Epub 2008 Dec 23.
8
Genome-wide association studies in cancer.癌症的全基因组关联研究。
Hum Mol Genet. 2008 Oct 15;17(R2):R109-15. doi: 10.1093/hmg/ddn287.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验