Suppr超能文献

基于水平集的具有平稳全局最小值的双峰分割。

Level set-based bimodal segmentation with stationary global minimum.

作者信息

Lee Suk-Ho, Seo Jin Keun

机构信息

Yonsei University, Department of Mathematics, Seoul, Korea.

出版信息

IEEE Trans Image Process. 2006 Sep;15(9):2843-52. doi: 10.1109/tip.2006.877308.

Abstract

In this paper, we propose a new level set-based partial differential equation (PDE) for the purpose of bimodal segmentation. The PDE is derived from an energy functional which is a modified version of the fitting term of the Chan-Vese model. The energy functional is designed to obtain a stationary global minimum, i.e., the level set function which evolves by the Euler-Lagrange equation of the energy functional has a unique convergence state. The existence of a global minimum makes the algorithm invariant to the initialization of the level set function, whereas the existence of a convergence state makes it possible to set a termination criterion on the algorithm. Furthermore, since the level set function converges to one of the two fixed values which are determined by the amount of the shifting of the Heaviside functions, an initialization of the level set function close to those values can result in a fast convergence.

摘要

在本文中,我们提出了一种基于水平集的新偏微分方程(PDE)用于双峰分割。该偏微分方程源自一个能量泛函,它是Chan-Vese模型拟合项的修改版本。能量泛函旨在获得一个平稳的全局最小值,即通过能量泛函的欧拉-拉格朗日方程演化的水平集函数具有唯一的收敛状态。全局最小值的存在使算法对水平集函数的初始化具有不变性,而收敛状态的存在使得可以为算法设置终止准则。此外,由于水平集函数收敛到由海维赛德函数的偏移量确定的两个固定值之一,将水平集函数初始化为接近这些值可以导致快速收敛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验