Van Sande J, Raspé E, Perret J, Lejeune C, Maenhaut C, Vassart G, Dumont J E
Institute of Interdisciplinary Research, University of Brussels, School of Medicine, Belgium.
Mol Cell Endocrinol. 1990 Nov 12;74(1):R1-6. doi: 10.1016/0303-7207(90)90209-q.
The effect of thyrotropin (TSH) on cyclic AMP accumulation, phosphatidylinositol bisphosphate (PIP2) hydrolysis and [Ca2+]i rise has been studied in CHO cells stably transfected with human TSH receptor (hTSHR) cDNA. In human thyroid slices, TSH activates these two intracellular cascades with a higher affinity for the adenylate cyclase activation (from 0.1 to 1 mU/ml TSH) than for phospholipase C activation (from 1 to 10 mU/ml TSH). The CHO cells transfected with the recently cloned cDNA of human TSH receptor respond in the same way to TSH. They respond between 0.1 and 1 mU/ml TSH for cyclic AMP accumulation and between 1 and 10 mU/ml TSH for inositol monophosphate (IP1) increase. In these same cells, TSH 10 mU/ml, but not forskolin (10 microM), or dibutyryl cyclic AMP (100 microM), clearly enhances intracellular calcium concentration [( Ca2+]i). Our results demonstrate unequivocally that a single transcription unit has the potential to encode receptor molecules coupled to both cascades.