Suppr超能文献

丙酮酸脱氢酶复合体缺陷、生产 L-缬氨酸的谷氨酸棒杆菌的比较 13C 代谢通量分析。

Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.

机构信息

Institute of Bio and Geo Sciences, IBG-1, Biotechnology, Forschungszentrum Jülich, Jülich, Germany.

出版信息

Appl Environ Microbiol. 2011 Sep;77(18):6644-52. doi: 10.1128/AEM.00575-11. Epub 2011 Jul 22.

Abstract

L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.

摘要

L-缬氨酸可以在缺乏活性丙酮酸脱氢酶复合物(PDHC)的谷氨酸棒杆菌菌株中成功合成。通过(13)C 代谢通量分析比较了野生型谷氨酸棒杆菌和四种 PDHC 缺陷菌株,特别是重点关注糖酵解和戊糖磷酸途径(PPP)之间的分裂比。与野生型相比,PPP 中的碳通量为 69%±14%,PDHC 缺陷菌株中的 PPP 通量明显增加,最高可达 113%±22%。PPP 分裂比的变化可以通过形成 L-缬氨酸对 NADPH 的需求增加来解释。因此,将大肠杆菌的反向氢酶 PntAB 引入到 L-缬氨酸生产的谷氨酸棒杆菌菌株中,该酶可以催化 NADH 可逆转化为 NADPH,导致 PPP 通量降低至 57%±6%,低于野生型分裂比。因此,反向氢酶活性为提供足够的 NADPH 供应提供了另一种选择,这对于大多数氨基酸生产系统都很重要。此外,正如 L-缬氨酸所证明的那样,由于 PPP 中二氧化碳形成的同时减少,这种旁路会导致产物产率显著提高。

相似文献

1
Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.
Appl Environ Microbiol. 2011 Sep;77(18):6644-52. doi: 10.1128/AEM.00575-11. Epub 2011 Jul 22.
3
Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.
J Ind Microbiol Biotechnol. 2017 Jul;44(7):1115-1126. doi: 10.1007/s10295-017-1933-0. Epub 2017 Mar 16.
8
Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
Biotechnol Prog. 2015 Jan-Feb;31(1):12-9. doi: 10.1002/btpr.1998. Epub 2014 Oct 28.
10
Optimal Ratio of Carbon Flux between Glycolysis and the Pentose Phosphate Pathway for Amino Acid Accumulation in .
ACS Synth Biol. 2020 Jul 17;9(7):1615-1622. doi: 10.1021/acssynbio.0c00181. Epub 2020 Jun 30.

引用本文的文献

1
Construction and screening of L-valine high-yielding using an artificial screening marker.
Front Microbiol. 2025 Aug 7;16:1627242. doi: 10.3389/fmicb.2025.1627242. eCollection 2025.
2
System metabolic engineering of W for the production of 2-ketoisovalerate using unconventional feedstock.
Front Bioeng Biotechnol. 2023 Apr 20;11:1176445. doi: 10.3389/fbioe.2023.1176445. eCollection 2023.
3
Transcriptome analysis of L-leucine-producing Corynebacterium glutamicum under the addition of trimethylglycine.
Amino Acids. 2022 Feb;54(2):229-240. doi: 10.1007/s00726-021-03105-5. Epub 2021 Nov 27.
4
Engineering of microbial cells for L-valine production: challenges and opportunities.
Microb Cell Fact. 2021 Aug 30;20(1):172. doi: 10.1186/s12934-021-01665-5.
5
L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects.
Amino Acids. 2021 Sep;53(9):1301-1312. doi: 10.1007/s00726-021-03066-9. Epub 2021 Aug 16.
6
Improvement of l-Valine Production by Atmospheric and Room Temperature Plasma Mutagenesis and High-Throughput Screening in .
ACS Omega. 2020 Mar 6;5(10):4751-4758. doi: 10.1021/acsomega.9b02747. eCollection 2020 Mar 17.
8
Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply.
J Ind Microbiol Biotechnol. 2019 Jan;46(1):45-54. doi: 10.1007/s10295-018-2103-8. Epub 2018 Nov 16.
9

本文引用的文献

1
Stationary versus non-stationary (13)C-MFA: a comparison using a consistent dataset.
J Biotechnol. 2011 Jul 10;154(2-3):179-90. doi: 10.1016/j.jbiotec.2010.07.008. Epub 2010 Jul 16.
2
Studies on substrate utilisation in L-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex.
Bioprocess Biosyst Eng. 2010 Sep;33(7):873-83. doi: 10.1007/s00449-010-0410-1. Epub 2010 Mar 5.
3
Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum.
Biotechnol Prog. 2010 Mar-Apr;26(2):361-71. doi: 10.1002/btpr.345.
4
Analysing overexpression of L-valine biosynthesis genes in pyruvate-dehydrogenase-deficient Corynebacterium glutamicum.
J Ind Microbiol Biotechnol. 2010 Mar;37(3):263-70. doi: 10.1007/s10295-009-0669-x. Epub 2009 Dec 11.
6
Fermentative production of branched chain amino acids: a focus on metabolic engineering.
Appl Microbiol Biotechnol. 2010 Jan;85(3):491-506. doi: 10.1007/s00253-009-2307-y.
7
(13)C-based metabolic flux analysis.
Nat Protoc. 2009;4(6):878-92. doi: 10.1038/nprot.2009.58. Epub 2009 May 21.
9
Response of the central metabolism of Corynebacterium glutamicum to different flux burdens.
Biotechnol Bioeng. 1997 Oct 20;56(2):168-80. doi: 10.1002/(SICI)1097-0290(19971020)56:2<168::AID-BIT6>3.0.CO;2-N.
10
Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis.
Biotechnol Bioeng. 1997 Jul 5;55(1):118-35. doi: 10.1002/(SICI)1097-0290(19970705)55:1<118::AID-BIT13>3.0.CO;2-I.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验