Suppr超能文献

钾在水中溶剂化的理论研究:对比从头算、可极化和固定电荷模型

A theoretical study of aqueous solvation of K comparing ab initio, polarizable, and fixed-charge models.

作者信息

Whitfield Troy W, Varma Sameer, Harder Edward, Lamoureux Guillaume, Rempe Susan B, Roux Benoît

机构信息

Biosciences Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439.

出版信息

J Chem Theory Comput. 2007;3(6):2068-2082. doi: 10.1021/ct700172b.

Abstract

The hydration of K(+) is studied using a hierarchy of theoretical approaches, including ab initio Born-Oppenheimer molecular dynamics and Car-Parrinello molecular dynamics, a polarizable force field model based on classical Drude oscillators, and a nonpolarizable fixed-charge potential based on the TIP3P water model. While models based more directly on quantum mechanics offer the possibility to account for complex electronic effects, polarizable and fixed-charges force fields allow for simulations of large systems and the calculation of thermodynamic observables with relatively modest computational costs. A particular emphasis is placed on investigating the sensitivity of the polarizable model to reproduce key aspects of aqueous K(+), such as the coordination structure, the bulk hydration free energy, and the self diffusion of K(+). It is generally found that, while the simple functional form of the polarizable Drude model imposes some restrictions on the range of properties that can simultaneously be fitted, the resulting hydration structure for aqueous K(+) agrees well with experiment and with more sophisticated computational models. A counterintuitive result, seen in Car-Parrinello molecular dynamics and in simulations with the Drude polarizable force field, is that the average induced molecular dipole of the water molecules within the first hydration shell around K(+) is slightly smaller than the corresponding value in the bulk. In final analysis, the perspective of K(+) hydration emerging from the various computational models is broadly consistent with experimental data, though at a finer level there remain a number of issues that should be resolved to further our ability in modeling ion hydration accurately.

摘要

使用一系列理论方法研究了K(+)的水合作用,这些方法包括从头算玻恩-奥本海默分子动力学和卡-帕里尼罗分子动力学、基于经典德鲁德振子的可极化力场模型以及基于TIP3P水模型的不可极化固定电荷势。虽然更直接基于量子力学的模型有可能考虑复杂的电子效应,但可极化和固定电荷力场允许对大型系统进行模拟,并以相对适中的计算成本计算热力学可观测量。特别强调研究可极化模型对重现水合K(+)的关键方面(如配位结构、体相水合自由能和K(+)的自扩散)的敏感性。一般发现,虽然可极化德鲁德模型的简单函数形式对可同时拟合的性质范围施加了一些限制,但所得的水合K(+)的水合结构与实验以及更复杂的计算模型吻合良好。在卡-帕里尼罗分子动力学和德鲁德可极化力场模拟中看到的一个违反直觉的结果是,K(+)周围第一水合层内水分子的平均诱导分子偶极略小于体相中的相应值。归根结底,各种计算模型得出的K(+)水合作用观点与实验数据大致一致,不过在更精细的层面上,仍有许多问题需要解决,以进一步提高我们准确模拟离子水合作用的能力。

相似文献

2
Global Optimization of the Lennard-Jones Parameters for the Drude Polarizable Force Field.
J Chem Theory Comput. 2021 Nov 9;17(11):7085-7095. doi: 10.1021/acs.jctc.1c00664. Epub 2021 Oct 5.
3
Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models.
Biophys J. 2009 Jan;96(2):385-402. doi: 10.1016/j.bpj.2008.09.048.
4
Representation of Ion-Protein Interactions Using the Drude Polarizable Force-Field.
J Phys Chem B. 2015 Jul 23;119(29):9401-16. doi: 10.1021/jp510560k. Epub 2015 Feb 4.
6
Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator.
J Chem Inf Model. 2018 May 29;58(5):993-1004. doi: 10.1021/acs.jcim.8b00132. Epub 2018 Apr 17.
10
The Solvation Structure of Na(+) and K(+) in Liquid Water Determined from High Level ab Initio Molecular Dynamics Simulations.
J Chem Theory Comput. 2012 Oct 9;8(10):3526-35. doi: 10.1021/ct300091w. Epub 2012 Apr 19.

引用本文的文献

1
The voltage-sensing domain of a hERG1 mutant is a cation-selective channel.
Biophys J. 2022 Dec 6;121(23):4585-4599. doi: 10.1016/j.bpj.2022.10.032. Epub 2022 Oct 29.
2
Inclusion of High-Field Target Data in AMOEBA's Calibration Improves Predictions of Protein-Ion Interactions.
J Chem Inf Model. 2022 Oct 10;62(19):4713-4726. doi: 10.1021/acs.jcim.2c00758. Epub 2022 Sep 29.
3
Deep Neural Network Model to Predict the Electrostatic Parameters in the Polarizable Classical Drude Oscillator Force Field.
J Chem Theory Comput. 2022 Mar 8;18(3):1711-1725. doi: 10.1021/acs.jctc.1c01166. Epub 2022 Feb 11.
6
Cryo-EM structures of a lipid-sensitive pentameric ligand-gated ion channel embedded in a phosphatidylcholine-only bilayer.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1788-1798. doi: 10.1073/pnas.1906823117. Epub 2020 Jan 7.
7
Ion-Hydroxyl Interactions: From High-Level Quantum Benchmarks to Transferable Polarizable Force Fields.
J Chem Theory Comput. 2019 Apr 9;15(4):2444-2453. doi: 10.1021/acs.jctc.8b01198. Epub 2019 Mar 13.
8
Evaluating the strength of salt bridges: a comparison of current biomolecular force fields.
J Phys Chem B. 2014 Jun 19;118(24):6561-9. doi: 10.1021/jp500958r. Epub 2014 Apr 17.
10
Classical electrostatics for biomolecular simulations.
Chem Rev. 2014 Jan 8;114(1):779-814. doi: 10.1021/cr300461d. Epub 2013 Aug 27.

本文引用的文献

2
Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions.
J Chem Theory Comput. 2006 Nov;2(6):1499-509. doi: 10.1021/ct600252r.
3
Water revisited.
Science. 1980 Jul 25;209(4455):451-7. doi: 10.1126/science.209.4455.451.
4
Tuning ion coordination architectures to enable selective partitioning.
Biophys J. 2007 Aug 15;93(4):1093-9. doi: 10.1529/biophysj.107.107482. Epub 2007 May 18.
5
Coordination numbers of alkali metal ions in aqueous solutions.
Biophys Chem. 2006 Dec 1;124(3):192-9. doi: 10.1016/j.bpc.2006.07.002. Epub 2006 Jul 27.
6
Ion solvation and water structure in potassium halide aqueous solutions.
Biophys Chem. 2006 Dec 1;124(3):180-91. doi: 10.1016/j.bpc.2006.04.009. Epub 2006 May 15.
10
Dispersion corrections to density functionals for water aromatic interactions.
J Chem Phys. 2004 Feb 8;120(6):2693-9. doi: 10.1063/1.1637034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验