Suppr超能文献

论巴甫洛夫式学习中条件刺激(CS)和无条件刺激(US)表征的本质。

On the nature of CS and US representations in Pavlovian learning.

作者信息

Delamater Andrew R

机构信息

Psychology Department, Brooklyn College - CUNY, 2900 Bedford Ave, Brooklyn, NY 11210, USA.

出版信息

Learn Behav. 2012 Mar;40(1):1-23. doi: 10.3758/s13420-011-0036-4.

Abstract

A significant problem in the study of Pavlovian conditioning is characterizing the nature of the representations of events that enter into learning. This issue has been explored extensively with regard to the question of what features of the unconditioned stimulus enter into learning, but considerably less work has been directed to the question of characterizing the nature of the conditioned stimulus. This article introduces a multilayered connectionist network approach to understanding how "perceptual" or "conceptual" representations of the conditioned stimulus might emerge from conditioning and participate in various learning phenomena. The model is applied to acquired equivalence/distinctiveness of cue effects, as well as a variety of conditional discrimination learning tasks (patterning, biconditional, ambiguous occasion setting, feature discriminations). In addition, studies that have examined what aspects of the unconditioned stimulus enter into learning are also reviewed. Ultimately, it is concluded that adopting a multilayered connectionist network perspective of Pavlovian learning provides us with a richer way in which to view basic learning processes, but a number of key theoretical problems remain to be solved, particularly as they relate to the integration of what we know about the nature of the representations of conditioned and unconditioned stimuli.

摘要

巴甫洛夫条件反射研究中的一个重大问题是如何描述参与学习的事件表征的本质。关于无条件刺激的哪些特征参与学习这一问题,已进行了广泛探讨,但针对描述条件刺激本质问题的研究却少得多。本文介绍一种多层联结主义网络方法,以理解条件刺激的“感知”或“概念”表征如何从条件反射中产生,并参与各种学习现象。该模型被应用于线索效应的习得等价性/差异性,以及各种条件辨别学习任务(模式化、双条件、模糊场合设定、特征辨别)。此外,还综述了研究无条件刺激哪些方面参与学习的相关研究。最终得出结论,采用多层联结主义网络视角看待巴甫洛夫式学习,能为我们提供更丰富的方式来审视基本学习过程,但仍有一些关键理论问题有待解决,特别是与整合我们对条件刺激和无条件刺激表征本质的认识相关的问题。

相似文献

1
On the nature of CS and US representations in Pavlovian learning.
Learn Behav. 2012 Mar;40(1):1-23. doi: 10.3758/s13420-011-0036-4.
2
Occasion setting in Pavlovian ambiguous target discriminations.
Behav Processes. 2008 Nov;79(3):132-47. doi: 10.1016/j.beproc.2008.07.001. Epub 2008 Jul 10.
3
Pavlovian contingencies and temporal information.
J Exp Psychol Anim Behav Process. 2006 Jul;32(3):284-94. doi: 10.1037/0097-7403.32.3.284.
4
Elemental, configural, and occasion setting mechanisms in biconditional and patterning discriminations.
Behav Processes. 2017 Apr;137:40-52. doi: 10.1016/j.beproc.2016.10.013. Epub 2016 Nov 5.
5
Magazine approach during a signal for food depends on Pavlovian, not instrumental, conditioning.
J Exp Psychol Anim Behav Process. 2013 Apr;39(2):107-16. doi: 10.1037/a0031315. Epub 2013 Feb 18.
7
The development and present status of the SOP model of associative learning.
Q J Exp Psychol (Hove). 2019 Feb;72(2):346-374. doi: 10.1177/1747021818777074. Epub 2018 May 23.
8
Cognitive aspects of classical conditioning.
Curr Opin Neurobiol. 1993 Apr;3(2):230-6. doi: 10.1016/0959-4388(93)90215-k.
10
Hippocampal activity during classical discrimination--reversal eyeblink conditioning in rabbits.
Behav Neurosci. 1997 Feb;111(1):70-9. doi: 10.1037//0735-7044.111.1.70.

引用本文的文献

1
Topographically selective motor inhibition under threat of pain.
Pain. 2024 Dec 1;165(12):2851-2862. doi: 10.1097/j.pain.0000000000003301. Epub 2024 Jun 25.
2
Dopamine projections to the basolateral amygdala drive the encoding of identity-specific reward memories.
Nat Neurosci. 2024 Apr;27(4):728-736. doi: 10.1038/s41593-024-01586-7. Epub 2024 Feb 23.
3
Dopamine-independent effect of rewards on choices through hidden-state inference.
Nat Neurosci. 2024 Feb;27(2):286-297. doi: 10.1038/s41593-023-01542-x. Epub 2024 Jan 12.
5
Effects of predictive and incentive value manipulation on sign- and goal-tracking behavior.
Neurobiol Learn Mem. 2023 Sep;203:107796. doi: 10.1016/j.nlm.2023.107796. Epub 2023 Jun 28.
6
How common is a common error term? The rules that govern associative learning in sensory preconditioning and second-order conditioning.
Front Behav Neurosci. 2022 Oct 14;16:954646. doi: 10.3389/fnbeh.2022.954646. eCollection 2022.
7
Hierarchical and configural control in conditional discrimination learning.
J Exp Psychol Anim Learn Cogn. 2022 Oct;48(4):370-382. doi: 10.1037/xan0000342.
8
Amygdala-cortical collaboration in reward learning and decision making.
Elife. 2022 Sep 5;11:e80926. doi: 10.7554/eLife.80926.
9
An exploration of error-driven learning in simple two-layer networks from a discriminative learning perspective.
Behav Res Methods. 2022 Oct;54(5):2221-2251. doi: 10.3758/s13428-021-01711-5. Epub 2022 Jan 14.
10
Training-Dependent Change in Content of Association in Appetitive Pavlovian Conditioning.
Front Behav Neurosci. 2021 Nov 25;15:750131. doi: 10.3389/fnbeh.2021.750131. eCollection 2021.

本文引用的文献

1
Disentangling pleasure from incentive salience and learning signals in brain reward circuitry.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):E255-64. doi: 10.1073/pnas.1101920108. Epub 2011 Jun 13.
2
Two kinds of attention in Pavlovian conditioning: evidence for a hybrid model of learning.
J Exp Psychol Anim Behav Process. 2010 Oct;36(4):456-70. doi: 10.1037/a0018528.
3
Differential outcome effects in pavlovian biconditional and ambiguous occasion setting tasks.
J Exp Psychol Anim Behav Process. 2010 Oct;36(4):471-81. doi: 10.1037/a0019136.
7
Representations of single and compound stimuli in negative and positive patterning.
Learn Behav. 2009 Aug;37(3):230-45. doi: 10.3758/LB.37.3.230.
8
'Liking' and 'wanting' food rewards: brain substrates and roles in eating disorders.
Physiol Behav. 2009 Jul 14;97(5):537-50. doi: 10.1016/j.physbeh.2009.02.044. Epub 2009 Mar 29.
9
Temporal maps and informativeness in associative learning.
Trends Neurosci. 2009 Feb;32(2):73-8. doi: 10.1016/j.tins.2008.10.004. Epub 2009 Jan 10.
10
Complementary roles for amygdala and periaqueductal gray in temporal-difference fear learning.
Learn Mem. 2008 Dec 30;16(1):1-7. doi: 10.1101/lm.1120509. Print 2009 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验