Department of Pediatrics, Division of Pediatric Endocrinology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Stem Cells. 2011 Oct;29(10):1537-48. doi: 10.1002/stem.697.
Failures of fracture repair (nonunions) occur in 10% of all fractures. The use of mesenchymal stem cells (MSC) in tissue regeneration appears to be rationale, safe, and feasible. The contributions of MSC to the reparative process can occur through autocrine and paracrine effects. The primary objective of this study is to find a novel mean, by transplanting primary cultures of bone marrow-derived MSCs expressing insulin-like growth factor-I (MSC(IGF)), to promote these seed-and-soil actions of MSC to fully implement their regenerative abilities in fracture repair and nonunions. MSC(IGF) or traceable MSC(IGF)-Lac-Z were transplanted into wild-type or insulin-receptor-substrate knockout (Irs1(-/-)) mice with a stabilized tibia fracture. Healing was assessed using biomechanical testing, microcomputed tomography (μCT), and histological analyses. We found that systemically transplanted MSC(IGF) through autocrine and paracrine actions improved the fracture mechanical strength and increased new bone content while accelerating mineralization. We determined that IGF-I adapted the response of transplanted MSC(IGF) to promote their differentiation into osteoblasts. In vitro and in vivo studies showed that IGF-I-induced osteoglastogenesis in MSCs was dependent of an intact IRS1-PI3K signaling. Furthermore, using Irs1(-/-) mice as a nonunion fracture model through altered IGF signaling, we demonstrated that the autocrine effect of IGF-I on MSC restored the fracture new bone formation and promoted the occurrence of a well-organized callus that bridged the gap. A callus that was basically absent in Irs1(-/-) left untransplanted or transplanted with MSCs. We provided evidence of effects and mechanisms for transplanted MSC(IGF) in fracture repair and potentially to treat nonunions.
骨折修复(骨不连)的失败发生率占所有骨折的 10%。间充质干细胞(MSC)在组织再生中的应用似乎具有合理性、安全性和可行性。MSC 对修复过程的贡献可以通过自分泌和旁分泌作用来实现。本研究的主要目的是通过移植表达胰岛素样生长因子-I(MSC(IGF))的原代骨髓 MSC,寻找一种新的方法,来促进 MSC 的这些“种子-土壤”作用,充分发挥其在骨折修复和骨不连中的再生能力。将 MSC(IGF)或可追踪的 MSC(IGF)-Lac-Z 移植到具有稳定胫骨骨折的野生型或胰岛素受体底物敲除(Irs1(-/-))小鼠体内。使用生物力学测试、微计算机断层扫描(μCT)和组织学分析评估愈合情况。我们发现,通过自分泌和旁分泌作用系统移植的 MSC(IGF)可改善骨折的机械强度,增加新骨含量,同时加速矿化。我们确定 IGF-I 改变了移植 MSC(IGF)的反应,促进其分化为成骨细胞。体外和体内研究表明,IGF-I 诱导 MSC 成骨细胞分化依赖于 IRS1-PI3K 信号的完整。此外,我们使用 Irs1(-/-)小鼠作为改变 IGF 信号的骨不连骨折模型,证明 IGF-I 对 MSC 的自分泌作用恢复了骨折新骨形成,并促进了具有桥接间隙的组织有序的骨痂的形成。在 Irs1(-/-)未移植或移植 MSC 的左骨中,基本上不存在骨痂。我们提供了移植 MSC(IGF)在骨折修复中作用和机制的证据,并可能用于治疗骨不连。