Suppr超能文献

人类喉管状三维模型中发声动力学的计算建模。

Computational modeling of phonatory dynamics in a tubular three-dimensional model of the human larynx.

机构信息

Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 North Charles Street, Baltimore, Maryland 21218, USA.

出版信息

J Acoust Soc Am. 2012 Sep;132(3):1602-13. doi: 10.1121/1.4740485.

Abstract

Simulation of the phonatory flow-structure interaction has been conducted in a three-dimensional, tubular shaped laryngeal model that has been designed with a high level of realism with respect to the human laryngeal anatomy. A non-linear spring-based contact force model is also implemented for the purpose of representing contact in more general conditions, especially those associated with three-dimensional modeling of phonation in the presence of vocal fold pathologies. The model is used to study the effects of a moderate (20%) vocal-fold tension imbalance on the phonatory dynamics. The characteristic features of phonation for normal as well as tension-imbalanced vocal folds, such as glottal waveform, glottal jet evolution, mucosal wave-type vocal-fold motion, modal entrainment, and asymmetric glottal jet deflection have been discussed in detail and compared to established data. It is found that while a moderate level of tension asymmetry does not change the vibratory dynamics significantly, it can potentially lead to measurable deterioration in voice quality.

摘要

已经在一个三维管状喉模型中进行了发声流固相互作用的模拟,该模型在人体喉部解剖结构方面具有高度的逼真度。还实现了基于非线性弹簧的接触力模型,目的是在更一般的条件下表示接触,特别是在存在声带病变的情况下进行三维发声建模时的接触条件。该模型用于研究中度(20%)声带张力失衡对发声动力学的影响。对正常和张力失衡的声带的发声特征,如声门波、声门射流演化、黏膜波型声带运动、模态激发和非对称声门射流偏折进行了详细讨论,并与已有数据进行了比较。结果发现,尽管中等程度的张力不对称不会显著改变振动动力学,但它可能导致可测量的音质恶化。

相似文献

3
Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
J Voice. 2014 Jul;28(4):411-9. doi: 10.1016/j.jvoice.2013.12.016. Epub 2014 Apr 13.
4
The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model.
J Voice. 2017 May;31(3):275-281. doi: 10.1016/j.jvoice.2016.04.006. Epub 2016 May 10.
5
The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
J Voice. 2018 Jul;32(4):396-402. doi: 10.1016/j.jvoice.2017.06.013. Epub 2017 Aug 18.
6
Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
J Biomech. 2015 May 1;48(7):1248-57. doi: 10.1016/j.jbiomech.2015.03.010. Epub 2015 Mar 19.
7
A rat excised larynx model of vocal fold scar.
J Speech Lang Hear Res. 2009 Aug;52(4):1008-20. doi: 10.1044/1092-4388(2009/08-0049).
8
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.
9
Quantitative assessment of videolaryngostroboscopic images in patients with glottic pathologies.
Logoped Phoniatr Vocol. 2017 Jul;42(2):73-83. doi: 10.3109/14015439.2016.1174293. Epub 2016 May 2.
10
The Potential Role of Subglottal Convergence Angle and Measurement.
J Voice. 2017 Jan;31(1):116.e1-116.e5. doi: 10.1016/j.jvoice.2016.03.009. Epub 2016 Apr 25.

引用本文的文献

2
Subject-Specific Computational Fluid-Structure Interaction Modeling of Rabbit Vocal Fold Vibration.
Fluids (Basel). 2022 Mar;7(3). doi: 10.3390/fluids7030097. Epub 2022 Mar 6.
4
A Deep Neural Network Based Glottal Flow Model for Predicting Fluid-Structure Interactions during Voice Production.
Appl Sci (Basel). 2020 Jan 2;10(2). doi: 10.3390/app10020705. Epub 2020 Jan 19.
7
Pathological Voice Source Analysis System Using a Flow Waveform-Matched Biomechanical Model.
Appl Bionics Biomech. 2018 Jul 2;2018:3158439. doi: 10.1155/2018/3158439. eCollection 2018.
8
Investigating the effects of laryngotracheal stenosis on upper airway aerodynamics.
Laryngoscope. 2018 Apr;128(4):E141-E149. doi: 10.1002/lary.26954. Epub 2017 Oct 17.
10
Computational Modeling of Fluid-Structure-Acoustics Interaction during Voice Production.
Front Bioeng Biotechnol. 2017 Feb 13;5:7. doi: 10.3389/fbioe.2017.00007. eCollection 2017.

本文引用的文献

1
Asymmetric glottal jet deflection: differences of two- and three-dimensional models.
J Acoust Soc Am. 2011 Dec;130(6):EL373-9. doi: 10.1121/1.3655893.
4
Toward a simulation-based tool for the treatment of vocal fold paralysis.
Front Physiol. 2011 May 2;2:19. doi: 10.3389/fphys.2011.00019. eCollection 2011.
5
A computational study of asymmetric glottal jet deflection during phonation.
J Acoust Soc Am. 2011 Apr;129(4):2133-43. doi: 10.1121/1.3544490.
7
A computational study of the effect of vocal-fold asymmetry on phonation.
J Acoust Soc Am. 2010 Aug;128(2):818-27. doi: 10.1121/1.3458839.
8
Three-dimensional nature of the glottal jet.
J Acoust Soc Am. 2010 Mar;127(3):1537-47. doi: 10.1121/1.3299202.
9
Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics.
J Acoust Soc Am. 2010 Feb;127(2):1014-31. doi: 10.1121/1.3277165.
10
An immersed-boundary method for flow-structure interaction in biological systems with application to phonation.
J Comput Phys. 2008 Nov 20;227(22):9303-9332. doi: 10.1016/j.jcp.2008.05.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验