Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.
Nature. 2011 Jul 27;475(7357):510-3. doi: 10.1038/nature10183.
Membrane-bound receptors often form large assemblies resulting from binding to soluble ligands, cell-surface molecules on other cells and extracellular matrix proteins. For example, the association of membrane proteins with proteins on different cells (trans-interactions) can drive the oligomerization of proteins on the same cell (cis-interactions). A central problem in understanding the molecular basis of such phenomena is that equilibrium constants are generally measured in three-dimensional solution and are thus difficult to relate to the two-dimensional environment of a membrane surface. Here we present a theoretical treatment that converts three-dimensional affinities to two dimensions, accounting directly for the structure and dynamics of the membrane-bound molecules. Using a multiscale simulation approach, we apply the theory to explain the formation of ordered, junction-like clusters by classical cadherin adhesion proteins. The approach features atomic-scale molecular dynamics simulations to determine interdomain flexibility, Monte Carlo simulations of multidomain motion and lattice simulations of junction formation. A finding of general relevance is that changes in interdomain motion on trans-binding have a crucial role in driving the lateral, cis-, clustering of adhesion receptors.
膜结合受体通常通过与可溶性配体、其他细胞表面分子和细胞外基质蛋白的结合形成大的组装体。例如,膜蛋白与不同细胞上的蛋白(跨相互作用)的结合可以驱动同一细胞上蛋白的寡聚化(顺相互作用)。理解此类现象的分子基础的一个核心问题是,平衡常数通常在三维溶液中测量,因此很难与膜表面的二维环境相关联。在这里,我们提出了一种理论处理方法,将三维亲和力转化为二维亲和力,直接考虑膜结合分子的结构和动力学。我们使用多尺度模拟方法将该理论应用于解释经典钙黏蛋白粘附蛋白形成有序的连接样簇。该方法的特点是使用原子尺度的分子动力学模拟来确定结构域间的柔性,使用多结构域运动的蒙特卡罗模拟和连接形成的晶格模拟。一个具有普遍意义的发现是,跨结合时结构域间运动的变化在驱动粘附受体的侧向、顺式聚集中起着关键作用。