Suppr超能文献

DP包:R语言中的贝叶斯非参数和半参数建模

DPpackage: Bayesian Non- and Semi-parametric Modelling in R.

作者信息

Jara Alejandro, Hanson Timothy E, Quintana Fernando A, Müller Peter, Rosner Gary L

机构信息

Universidad de Concepción.

出版信息

J Stat Softw. 2011 Apr 1;40(5):1-30.

Abstract

Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling flexibility and robustness against mis-specification of the probability model. In the Bayesian context, this is accomplished by placing a prior distribution on a function space, such as the space of all probability distributions or the space of all regression functions. Unfortunately, posterior distributions ranging over function spaces are highly complex and hence sampling methods play a key role. This paper provides an introduction to a simple, yet comprehensive, set of programs for the implementation of some Bayesian non- and semi-parametric models in R, DPpackage. Currently DPpackage includes models for marginal and conditional density estimation, ROC curve analysis, interval-censored data, binary regression data, item response data, longitudinal and clustered data using generalized linear mixed models, and regression data using generalized additive models. The package also contains functions to compute pseudo-Bayes factors for model comparison, and for eliciting the precision parameter of the Dirichlet process prior. To maximize computational efficiency, the actual sampling for each model is carried out using compiled FORTRAN.

摘要

数据分析有时需要放宽参数假设,以便在概率模型误设的情况下获得建模灵活性和稳健性。在贝叶斯框架下,这是通过在函数空间(如所有概率分布的空间或所有回归函数的空间)上放置先验分布来实现的。不幸的是,函数空间上的后验分布非常复杂,因此抽样方法起着关键作用。本文介绍了一组简单而全面的程序,用于在R语言的DPpackage中实现一些贝叶斯非参数和半参数模型。目前,DPpackage包括用于边际和条件密度估计的模型、ROC曲线分析、区间删失数据、二元回归数据、项目反应数据、使用广义线性混合模型的纵向和聚类数据,以及使用广义相加模型的回归数据。该软件包还包含用于计算模型比较的伪贝叶斯因子以及引出狄利克雷过程先验精度参数的函数。为了最大限度地提高计算效率,每个模型的实际抽样使用编译后的FORTRAN进行。

相似文献

3
Marginally specified priors for non-parametric Bayesian estimation.用于非参数贝叶斯估计的边际指定先验
J R Stat Soc Series B Stat Methodol. 2015 Jan 1;77(1):35-58. doi: 10.1111/rssb.12059.
8
A semi-parametric Bayesian approach to generalized linear mixed models.一种用于广义线性混合模型的半参数贝叶斯方法。
Stat Med. 1998 Nov 30;17(22):2579-96. doi: 10.1002/(sici)1097-0258(19981130)17:22<2579::aid-sim948>3.0.co;2-p.
9
Bayesian semi-parametric ROC analysis.贝叶斯半参数ROC分析。
Stat Med. 2006 Nov 30;25(22):3905-28. doi: 10.1002/sim.2496.

引用本文的文献

1
Bayesian inference for asymptomatic COVID-19 infection rates.贝叶斯推断无症状 COVID-19 感染率。
Stat Med. 2022 Jul 20;41(16):3131-3148. doi: 10.1002/sim.9408. Epub 2022 May 18.
6
A tutorial on Dirichlet Process mixture modeling.狄利克雷过程混合模型教程。
J Math Psychol. 2019 Aug;91:128-144. doi: 10.1016/j.jmp.2019.04.004. Epub 2019 May 20.

本文引用的文献

3
Bayesian nonparametric nonproportional hazards survival modeling.贝叶斯非参数非比例风险生存建模
Biometrics. 2009 Sep;65(3):762-71. doi: 10.1111/j.1541-0420.2008.01166.x. Epub 2009 Feb 4.
4
Kernel stick-breaking processes.核折断过程
Biometrika. 2008;95(2):307-323. doi: 10.1093/biomet/asn012.
5
Bayesian nonparametric meta-analysis using Polya tree mixture models.使用波利亚树混合模型的贝叶斯非参数元分析。
Biometrics. 2008 Sep;64(3):825-833. doi: 10.1111/j.1541-0420.2007.00946.x. Epub 2007 Dec 6.
6
A class of parametric dynamic survival models.
Lifetime Data Anal. 2005 Mar;11(1):81-98. doi: 10.1007/s10985-004-5641-5.
7
Bayesian nonparametric modeling using mixtures of triangular distributions.
Biometrics. 2001 Jun;57(2):518-28. doi: 10.1111/j.0006-341x.2001.00518.x.
9
A semi-parametric Bayesian approach to generalized linear mixed models.一种用于广义线性混合模型的半参数贝叶斯方法。
Stat Med. 1998 Nov 30;17(22):2579-96. doi: 10.1002/(sici)1097-0258(19981130)17:22<2579::aid-sim948>3.0.co;2-p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验