Suppr超能文献

通过研究多污染物特征与贫困之间的关系来确定脆弱人群。

Identifying vulnerable populations through an examination of the association between multipollutant profiles and poverty.

机构信息

Department of Epidemiology and Biostatistics, Imperial College, London, UK.

出版信息

Environ Sci Technol. 2011 Sep 15;45(18):7754-60. doi: 10.1021/es104017x. Epub 2011 Aug 19.

Abstract

Recently, concerns have centered on how to expand knowledge on the limited science related to the cumulative impact of multiple air pollution exposures and the potential vulnerability of poor communities to their toxic effects. The highly intercorrelated nature of exposures makes application of standard regression-based methods to these questions problematic due to well-known issues related to multicollinearity. Our paper addresses these problems by using, as its basic unit of inference, a profile consisting of a pattern of exposure values. These profiles are grouped into clusters and associated with a deprivation outcome. Specifically, we examine how profiles of NO(2)-, PM(2.5)-, and diesel- (road and off-road) based exposures are associated with the number of individuals living under poverty in census tracts (CT's) in Los Angeles County. Results indicate that higher levels of pollutants are generally associated with higher poverty counts, though the association is complex and nonlinear. Our approach is set in the Bayesian framework, and as such the entire model can be fit as a unit using modern Bayesian multilevel modeling techniques via the freely available WinBUGS software package, (1) though we have used custom-written C++ code (validated with WinBUGS) to improve computational speed. The modeling approach proposed thus goes beyond single-pollutant models in that it allows us to determine the association between entire multipollutant profiles of exposures with poverty levels in small geographic areas in Los Angeles County.

摘要

最近,人们关注的焦点是如何扩展有关有限的科学知识,这些科学知识涉及多种空气污染暴露的累积影响,以及贫困社区对其有毒影响的潜在脆弱性。由于与多重共线性相关的众所周知的问题,暴露的高度相互关联性质使得标准回归方法在这些问题上的应用变得很复杂。我们的论文通过使用由暴露值模式组成的概要作为其推理的基本单位来解决这些问题。这些概要被分为聚类,并与贫困结果相关联。具体来说,我们研究了基于 NO(2)-、PM(2.5)-和柴油(道路和非道路)的暴露概况与洛杉矶县人口普查区 (CT) 中生活在贫困线以下的人数之间的关系。结果表明,一般来说,污染物水平越高,贫困人数就越多,尽管这种关联是复杂和非线性的。我们的方法设定在贝叶斯框架内,因此可以使用免费提供的 WinBUGS 软件包(1)通过现代贝叶斯多层次建模技术作为一个整体来拟合整个模型,尽管我们已经使用了自定义编写的 C++代码(通过 WinBUGS 验证)来提高计算速度。因此,所提出的建模方法超越了单一污染物模型,因为它使我们能够确定洛杉矶县小地理区域内整个多污染物暴露概况与贫困水平之间的关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验