Suppr超能文献

采用混合模式大孔吸附树脂从甜菊糖甙中制备分离瑞鲍迪甙 A。

Preparative separation and purification of rebaudioside a from steviol glycosides using mixed-mode macroporous adsorption resins.

机构信息

Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18 Tianshui Middle Road, Lanzhou 730000, China.

出版信息

J Agric Food Chem. 2011 Sep 14;59(17):9629-36. doi: 10.1021/jf2020232. Epub 2011 Aug 9.

Abstract

Preparative separation and purification of rebaudioside A from steviol glycosides using mixed-mode macroporous adsorption resins (MARs) were systematically investigated. Mixed-mode MARs were prepared by a physical blending method. By evaluation of the adsorption/desorption ratio and adsorption/desorption capacity of mixed-mode MARs with different proportions toward RA and ST, the mixed-mode MAR 18 was chosen as the optimum strategy. On the basis of the static tests, it was found that the experimental data fitted best to the pseudosecond-order kinetics and Temkin-Pyzhev isotherm. Furthermore, the dynamic adsorption/desorption experiments were performed on the mini column packed with mixed-mode MAR 18. After one run treatment, the purity of rebaudioside A in purified product increased from 40.77 to 60.53%, with a yield rate of 38.73% (W/W), and that in residual product decreased from 40.77 to 36.17%, with a recovery yield of 57.61% (W/W). The total recovery yield reached 96.34% (W/W). The results showed that this method could be utilized in large-scale production of rebaudioside A from steviol glycosides in industry.

摘要

采用混合模式大孔吸附树脂(MARs)对甜菊糖苷中的莱鲍迪苷 A 进行了制备分离和纯化的系统研究。混合模式 MARs 通过物理共混法制备。通过评估不同比例的混合模式 MARs 对 RA 和 ST 的吸附/解吸比和吸附/解吸容量,选择混合模式 MAR 18 作为最佳策略。基于静态测试,发现实验数据最符合伪二级动力学和 Temkin-Pyzhev 等温线。此外,在填充有混合模式 MAR 18 的微型柱上进行了动态吸附/解吸实验。经过一次运行处理,纯化产物中莱鲍迪苷 A 的纯度从 40.77%提高到 60.53%,收率为 38.73%(W/W),而残留产物中莱鲍迪苷 A 的纯度从 40.77%降低到 36.17%,回收率为 57.61%(W/W)。总回收率达到 96.34%(W/W)。结果表明,该方法可用于工业上从甜菊糖苷中大规模生产莱鲍迪苷 A。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验