Suppr超能文献

任务驱动的字典学习。

Task-driven dictionary learning.

机构信息

Department of Statistics, University of California, 301 Evans Hall, Berkeley, CA 94720-3860, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2012 Apr;34(4):791-804. doi: 10.1109/TPAMI.2011.156.

Abstract

Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.

摘要

用从学习字典中选择的少量元素的线性组合来对数据进行建模,一直是机器学习、神经科学和信号处理领域的研究热点。对于自然图像等可以稀疏表示的信号,现在已经确立了这些模型非常适合恢复任务。在这种情况下,学习字典相当于解决一个大规模矩阵分解问题,可以使用经典的优化工具有效地完成。同样的方法也被用于从数据中学习其他目的的特征,例如图像分类,但是为这些任务以监督的方式调整字典已经被证明更加困难。在本文中,我们提出了一种适用于各种任务的监督字典学习的一般公式,并提出了一种用于解决相应优化问题的有效算法。在手写数字分类、数字艺术识别、非线性逆图像问题和压缩感知等实验中,我们的方法在大规模环境下是有效的,并且非常适合于具有稀疏表示的数据的监督和半监督分类以及回归任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验