Suppr超能文献

酿酒酵母铜锌超氧化物歧化酶缺陷型突变体中的氧依赖型甲硫氨酸营养缺陷

O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae.

作者信息

Chang E C, Kosman D J

机构信息

Department of Biochemistry, School of Medicine, State University of New York, Buffalo 14214.

出版信息

J Bacteriol. 1990 Apr;172(4):1840-5. doi: 10.1128/jb.172.4.1840-1845.1990.

Abstract

Mutant strains of the yeast Saccharomyces cerevisiae which lack functional Cu,Zn superoxide dismutase (SOD-1) do not grow aerobically unless supplemented with methionine. The molecular basis of this O2-dependent auxotrophy in one of the mutants, Dscd1-1C, has been investigated. Sulfate supported anaerobic but not aerobic mutant growth. On the other hand, cysteine and homocysteine supported aerobic growth while serine, O-acetylserine, and homoserine did not, indicating that the interconversion of cysteine and methionine (and homocysteine) was not impaired. Thiosulfate (S2O3(2-] and sulfide (S2-) also supported aerobic growth; the activities of thiosulfate reductase and sulfhydrylase in the aerobic mutant strain were at wild-type levels. Although the levels of SO4(2-) and adenosine-5'-sulfate (the first intermediate in the SO4(2-) assimilation pathway) were elevated in the aerobically incubated mutant strain, this condition could be attributed to a decrease in protein synthesis caused by the de facto sulfur starvation and not to a block in the pathway. Therefore, the activation of SO4(2-) (to form 3'-phosphoadenosine-5'-phosphosulfate) appeared to be O2 tolerant. Sulfite reductase activity and substrate concentrations [( NADPH] and [SO3(2-)]) were not significantly different in aerobically grown mutant cultures and anaerobic cultures, indicating that SOD-1- mutant strains could reductively assimilate sulfur oxides. However, the mutant strain exhibited an O2-dependent sensitivity to SO3(2-) concentrations of less than 50 microM not exhibited by any SOD-1+ strain or by SOD-1- strains supplemented with a cytosolic O2(-)-scavenging activity. This result suggests that the aerobic reductive assimilation of SO4(2-) at the level of SO3(2-) may generate a cytotoxic compound(s) which persists in SOD-(1-) yeast strains.

摘要

酿酒酵母的突变菌株若缺乏功能性铜锌超氧化物歧化酶(SOD-1),则无法在有氧条件下生长,除非添加甲硫氨酸。已对其中一个突变体Dscd1-1C中这种氧气依赖性营养缺陷型的分子基础进行了研究。硫酸盐支持厌氧条件下的突变体生长,但不支持有氧条件下的生长。另一方面,半胱氨酸和高半胱氨酸支持有氧生长,而丝氨酸、O-乙酰丝氨酸和高丝氨酸则不支持,这表明半胱氨酸和甲硫氨酸(以及高半胱氨酸)的相互转化未受损害。硫代硫酸盐(S2O3(2-))和硫化物(S2-)也支持有氧生长;有氧突变菌株中硫代硫酸盐还原酶和巯基酶的活性处于野生型水平。尽管在有氧培养的突变菌株中硫酸根离子(SO4(2-))和腺苷-5'-硫酸盐(SO4(2-)同化途径中的第一个中间体)的水平有所升高,但这种情况可能归因于事实上的硫饥饿导致的蛋白质合成减少,而不是该途径中的阻断。因此,SO4(2-)的活化(形成3'-磷酸腺苷-5'-磷酸硫酸盐)似乎对氧气具有耐受性。在有氧生长的突变体培养物和厌氧培养物中,亚硫酸盐还原酶活性以及底物浓度([NADPH]和[SO3(2-)])没有显著差异,这表明SOD-1突变菌株能够还原性同化硫氧化物。然而,该突变菌株对浓度低于50微摩尔的亚硫酸根离子(SO3(2-))表现出氧气依赖性敏感性,这是任何SOD-1+菌株或具有胞质O2(-)清除活性的SOD-1-菌株所未表现出的。这一结果表明,在亚硫酸根离子(SO3(2-))水平上SO4(2-)的有氧还原性同化可能会产生一种细胞毒性化合物,该化合物在SOD-(1-)酵母菌株中持续存在。

相似文献

3
The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.酵母细胞中硫代硫酸盐利用的完整途径。
Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01241-18. Print 2018 Nov 15.

引用本文的文献

4
Cu/Zn Superoxide Dismutase (Sod1) regulates the canonical Wnt signaling pathway.铜锌超氧化物歧化酶(Sod1)调节经典 Wnt 信号通路。
Biochem Biophys Res Commun. 2021 Jan 1;534:720-726. doi: 10.1016/j.bbrc.2020.11.011. Epub 2020 Nov 18.
9
The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection.锰与铜/锌超氧化物歧化酶在氧化应激保护中的重叠作用。
Free Radic Biol Med. 2009 Jan 15;46(2):154-62. doi: 10.1016/j.freeradbiomed.2008.09.032. Epub 2008 Oct 14.

本文引用的文献

2
3
Biochemistry of sulfur-containing amino acids.含硫氨基酸的生物化学
Annu Rev Biochem. 1983;52:187-222. doi: 10.1146/annurev.bi.52.070183.001155.
10
Thioredoxin.硫氧还蛋白
Annu Rev Biochem. 1985;54:237-71. doi: 10.1146/annurev.bi.54.070185.001321.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验