Joint BioEnergy Institute, Emeryville, CA, USA.
Metab Eng. 2011 Sep;13(5):588-97. doi: 10.1016/j.ymben.2011.07.001. Epub 2011 Jul 28.
Expression of foreign pathways often results in suboptimal performance due to unintended factors such as introduction of toxic metabolites, cofactor imbalances or poor expression of pathway components. In this study we report a 120% improvement in the production of the isoprenoid-derived sesquiterpene, amorphadiene, produced by an engineered strain of Escherichia coli developed to express the native seven-gene mevalonate pathway from Saccharomyces cerevisiae (Martin et al. 2003). This substantial improvement was made by varying only a single component of the pathway (HMG-CoA reductase) and subsequent host optimization to improve cofactor availability. We characterized and tested five variant HMG-CoA reductases obtained from publicly available genome databases with differing kinetic properties and cofactor requirements. The results of our in vitro and in vivo analyses of these enzymes implicate substrate inhibition of mevalonate kinase as an important factor in optimization of the engineered mevalonate pathway. Consequently, the NADH-dependent HMG-CoA reductase from Delftia acidovorans, which appeared to have the optimal kinetic parameters to balance HMG-CoA levels below the cellular toxicity threshold of E. coli and those of mevalonate below inhibitory concentrations for mevalonate kinase, was identified as the best producer for amorphadiene (54% improvement over the native pathway enzyme, resulting in 2.5mM or 520 mg/L of amorphadiene after 48 h). We further enhanced performance of the strain bearing the D. acidovorans HMG-CoA reductase by increasing the intracellular levels of its preferred cofactor (NADH) using a NAD(+)-dependent formate dehydrogenase from Candida boidinii, along with formate supplementation. This resulted in an overall improvement of the system by 120% resulting in 3.5mM or 700 mg/L amorphadiene after 48 h of fermentation. This comprehensive study incorporated analysis of several key parameters for metabolic design such as in vitro and in vivo kinetic performance of variant enzymes, intracellular levels of protein expression, in-pathway substrate inhibition and cofactor management to enable the observed improvements. These metrics may be applied to a broad range of heterologous pathways for improving the production of biologically derived compounds.
由于引入有毒代谢物、辅助因子失衡或途径成分表达不佳等意外因素,外源途径的表达往往导致性能不佳。在这项研究中,我们报告了一种经过工程改造的大肠杆菌菌株生产异戊二烯衍生的倍半萜类化合物——绵马二烯醇的产量提高了 120%,该菌株被设计用来表达酿酒酵母(Martin 等人,2003 年)的天然七基因甲羟戊酸途径。这种实质性的改进仅通过改变途径的单个组件(HMG-CoA 还原酶)和随后的宿主优化来提高辅助因子的可用性来实现。我们从公开的基因组数据库中鉴定和测试了具有不同动力学特性和辅助因子需求的五种变体 HMG-CoA 还原酶。我们对这些酶的体外和体内分析结果表明,甲羟戊酸激酶的底物抑制是优化工程化甲羟戊酸途径的一个重要因素。因此,从 Delftia acidovorans 中获得的 NADH 依赖性 HMG-CoA 还原酶似乎具有最佳的动力学参数,可以平衡 HMG-CoA 水平低于大肠杆菌的细胞毒性阈值和甲羟戊酸激酶的抑制浓度以下的甲羟戊酸水平,被鉴定为生产绵马二烯醇的最佳酶(比天然途径酶提高 54%,48 小时后产生 2.5mM 或 520mg/L 的绵马二烯醇)。我们通过使用 Candida boidinii 的 NAD(+)-依赖性甲酸脱氢酶和甲酸补充来增加其首选辅助因子(NADH)的细胞内水平,进一步提高了携带 D.acidovorans HMG-CoA 还原酶的菌株的性能。这导致系统的整体性能提高了 120%,48 小时发酵后产生 3.5mM 或 700mg/L 的绵马二烯醇。这项全面的研究综合分析了代谢设计的几个关键参数,如变体酶的体外和体内动力学性能、蛋白质表达的细胞内水平、途径内底物抑制和辅助因子管理,以实现观察到的改进。这些指标可应用于广泛的异源途径,以提高生物衍生化合物的产量。