Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany.
Theor Appl Genet. 2011 Dec;123(8):1269-79. doi: 10.1007/s00122-011-1665-x. Epub 2011 Aug 3.
Recent progress in genotyping and doubled haploid (DH) techniques has created new opportunities for development of improved selection methods in numerous crops. Assuming a finite number of unlinked loci (ℓ) and a given total number (n) of individuals to be genotyped, we compared, by theory and simulations, three methods of marker-assisted selection (MAS) for gene stacking in DH lines derived from biparental crosses: (1) MAS for high values of the marker score (T, corresponding to the total number of target alleles) in the F(2) generation and subsequently among DH lines derived from the selected F(2) individual (Method 1), (2) MAS for augmented F(2) enrichment and subsequently for T among DH lines from the best carrier F(2) individual (Method 2), and (3) MAS for T among DH lines derived from the F(1) generation (Method 3). Our objectives were to (a) determine the optimum allocation of resources to the F(2) ([Formula: see text]) and DH generations [Formula: see text] for Methods 1 and 2 by simulations, (b) compare the efficiency of all three methods for gene stacking by simulations, and (c) develop theory to explain the general effect of selection on the segregation variance and interpret our simulation results. By theory, we proved that for smaller values of ℓ, the segregation variance of T among DH lines derived from F(2) individuals, selected for high values of T, can be much smaller than expected in the absence of selection. This explained our simulation results, showing that for Method 1, it is best to genotype more F(2) individuals than DH lines ([Formula: see text]), whereas under Method 2, the optimal ratio [Formula: see text] was close to 0.5. However, for ratios deviating moderately from the optimum, the mean [Formula: see text] of T in the finally selected DH line ([Formula: see text]) was hardly reduced. Method 3 had always the lowest mean [Formula: see text] of [Formula: see text] except for small numbers of loci (ℓ = 4) and is favorable only if a small number of loci are to be stacked in one genotype and/or saving one generation is of crucial importance in cultivar development. Method 2 is under most circumstances the superior method, because it generally showed the highest mean [Formula: see text] and lowest SD of [Formula: see text] for the finally selected DH.
最近在基因分型和加倍单倍体(DH)技术方面的进展为众多作物改良选择方法的发展创造了新的机会。假设存在有限数量的非连锁基因座(ℓ)和要进行基因分型的个体的给定总数(n),我们通过理论和模拟比较了三种从双亲杂交衍生的 DH 系中基因堆叠的标记辅助选择(MAS)方法:(1)在 F2 代中选择标记得分(T,对应于目标等位基因的总数)高的值进行 MAS,然后在从选定的 F2 个体衍生的 DH 系中进行 MAS(方法 1),(2)对 F2 进行扩增富集,然后在最佳载体 F2 个体中进行 T 的 MAS(方法 2),以及(3)在 F1 代中进行 DH 系的 T 的 MAS(方法 3)。我们的目标是:(a)通过模拟确定方法 1 和 2 中资源分配到 F2([公式:见文本])和 DH 代的最佳方案[公式:见文本];(b)通过模拟比较所有三种方法的基因堆叠效率;(c)建立理论来解释选择对分离方差的一般影响并解释我们的模拟结果。通过理论,我们证明,对于较小的ℓ值,从 F2 个体中选择高 T 值的 DH 系中 T 的分离方差可以比没有选择时小得多。这解释了我们的模拟结果,表明对于方法 1,最好对更多的 F2 个体进行基因分型,而不是 DH 系([公式:见文本]),而对于方法 2,最优比例[公式:见文本]接近 0.5。但是,对于偏离最优值适中的比例,最终选择的 DH 系中 T 的平均[公式:见文本]([公式:见文本])几乎没有降低。除了少数基因座(ℓ=4)外,方法 3 始终具有最低的平均[公式:见文本]([公式:见文本]),并且仅在需要在一个基因型中堆叠少量基因座并且/或者在品种开发中节省一代是至关重要的情况下才有利。在大多数情况下,方法 2 是优越的方法,因为它通常为最终选择的 DH 显示最高的平均[公式:见文本]和最低的[公式:见文本]SD。