Suppr超能文献

由于磷酸海藻糖酶编码基因 treA 的失活,在海藻糖存在下生长的单核细胞增生李斯特菌 568 中增强了耐热性和耐渗透压性。

Increased thermal and osmotic stress resistance in Listeria monocytogenes 568 grown in the presence of trehalose due to inactivation of the phosphotrehalase-encoding gene treA.

机构信息

Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, NS, Canada B4N 1J5.

出版信息

Appl Environ Microbiol. 2011 Oct;77(19):6841-51. doi: 10.1128/AEM.00757-11. Epub 2011 Aug 5.

Abstract

The food-borne pathogen Listeria monocytogenes is a problem for food processors and consumers alike, as the organism is resistant to harsh environmental conditions and inimical barriers implemented to prevent the survival and/or growth of harmful bacteria. One mechanism by which listeriae mediate survival is through the accumulation of compatible solutes, such as proline, betaine and carnitine. In other bacteria, including Escherichia coli, the synthesis and accumulation of another compatible solute, trehalose, are known to aid in the survival of stressed cells. The objective of this research was to investigate trehalose metabolism in L. monocytogenes, where the sugar is thought to be transferred across the cytoplasmic membrane via a specific phosphoenolpyruvate phosphotransferase system and phosphorylation to trehalose-6-phosphate (T6P). The latter is subsequently broken down into glucose and glucose-6-phosphate by α,α-(1,1) phosphotrehalase, the putative product of the treA gene. Here we report on an isogenic treA mutant of L. monocytogenes 568 (568:ΔTreA) which, relative to the wild-type strain, displays increased tolerances to multiple stressors, including heat, high osmolarity, and desiccation. This is the first study to examine the putative trehalose operon in L. monocytogenes, and we demonstrate that lmo1254 (treA) in L. monocytogenes 568 indeed encodes a phosphotrehalase required for the hydrolysis of T6P. Disruption of the treA gene results in the accumulation of T6P which is subsequently dephosphorylated to trehalose in the cytosol, thereby contributing to the stress hardiness observed in the treA mutant. This study highlights the importance of compatible solutes for microbial survival in adverse environments.

摘要

食源性病原体李斯特菌是食品加工者和消费者共同面临的问题,因为该生物体能够抵抗恶劣的环境条件和旨在防止有害细菌生存和/或生长的有害屏障。李斯特菌介导生存的一种机制是通过积累相容性溶质,如脯氨酸、甜菜碱和肉碱。在其他细菌中,包括大肠杆菌,已知合成和积累另一种相容性溶质海藻糖有助于应激细胞的存活。本研究的目的是研究李斯特菌中的海藻糖代谢,据认为该糖通过特定的磷酸烯醇丙酮酸磷酸转移酶系统和磷酸化作用转移到细胞质膜中,转化为海藻糖-6-磷酸(T6P)。后者随后被α,α-(1,1)磷酸海藻糖酶分解为葡萄糖和葡萄糖-6-磷酸,该酶的假定产物是 treA 基因的产物。在这里,我们报告了李斯特菌 568 的同基因 treA 突变体(568:ΔTreA),与野生型菌株相比,该突变体对多种胁迫剂(包括热、高渗透压和干燥)的耐受性增加。这是首次研究李斯特菌中假定的海藻糖操纵子,我们证明李斯特菌 568 中的 lmo1254(treA)确实编码了一种磷酸海藻糖酶,该酶需要水解 T6P。treA 基因的破坏导致 T6P 的积累,随后在细胞质中去磷酸化为海藻糖,从而导致在 treA 突变体中观察到的应激硬度增加。这项研究强调了相容性溶质对于微生物在不利环境中的生存的重要性。

相似文献

4
Purification and characterization of the phospho-alpha(1,1)glucosidase (TreA) of Bacillus subtilis 168.
J Bacteriol. 1995 May;177(10):2721-6. doi: 10.1128/jb.177.10.2721-2726.1995.
5
The trehalose operon of Pseudomonas fluorescens ATCC 17400.
Res Microbiol. 2000 Dec;151(10):845-51. doi: 10.1016/s0923-2508(00)01151-7.
8
Trehalose-6-phosphate hydrolase of Escherichia coli.
J Bacteriol. 1994 Sep;176(18):5654-64. doi: 10.1128/jb.176.18.5654-5664.1994.
10
Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation.
Plant Physiol. 2004 Jun;135(2):879-90. doi: 10.1104/pp.104.039503. Epub 2004 Jun 4.

引用本文的文献

2
Intracellular Protective Functions and Therapeutical Potential of Trehalose.
Molecules. 2024 May 1;29(9):2088. doi: 10.3390/molecules29092088.
3
Survival strategies of to environmental hostile stress: biofilm formation and stress responses.
Food Sci Biotechnol. 2023 Sep 14;32(12):1631-1651. doi: 10.1007/s10068-023-01427-6. eCollection 2023 Oct.
4
Combined transcriptomics and metabolomics analysis reveals the molecular mechanism of heat tolerance of Le023M, a mutant in .
Heliyon. 2023 Jul 17;9(7):e18360. doi: 10.1016/j.heliyon.2023.e18360. eCollection 2023 Jul.
5
Deciphering the global roles of Cold shock proteins in nutrient metabolism and stress tolerance.
Front Microbiol. 2022 Dec 20;13:1057754. doi: 10.3389/fmicb.2022.1057754. eCollection 2022.
6
Adaptive Response of to the Stress Factors in the Food Processing Environment.
Front Microbiol. 2021 Aug 19;12:710085. doi: 10.3389/fmicb.2021.710085. eCollection 2021.
7
8
Proteomic Analysis of FBUNT During Biofilm Formation at 10°C in Response to Lactocin AL705.
Front Microbiol. 2021 Jan 29;12:604126. doi: 10.3389/fmicb.2021.604126. eCollection 2021.
9
10
Trehalose and bacterial virulence.
Virulence. 2020 Dec;11(1):1192-1202. doi: 10.1080/21505594.2020.1809326.

本文引用的文献

1
Insertional mutagenesis of Listeria monocytogenes 568 reveals genes that contribute to enhanced thermotolerance.
Int J Food Microbiol. 2009 Nov 30;136(1):1-9. doi: 10.1016/j.ijfoodmicro.2009.09.020. Epub 2009 Sep 27.
3
Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM.
Appl Environ Microbiol. 2006 Feb;72(2):1218-25. doi: 10.1128/AEM.72.2.1218-1225.2006.
4
Enhanced trehalose production improves growth of Escherichia coli under osmotic stress.
Appl Environ Microbiol. 2005 Jul;71(7):3761-9. doi: 10.1128/AEM.71.7.3761-3769.2005.
5
Proteomic and microscopic analysis of biofilms formed by Listeria monocytogenes 568.
Can J Microbiol. 2005 Mar;51(3):197-208. doi: 10.1139/w04-129.
7
Strain-specific differences in the attachment of Listeria monocytogenes to alfalfa sprouts.
J Food Prot. 2004 Nov;67(11):2488-95. doi: 10.4315/0362-028x-67.11.2488.
8
Catabolite repression and virulence gene expression in Listeria monocytogenes.
Curr Microbiol. 2004 Aug;49(2):95-8. doi: 10.1007/s00284-004-4204-z.
9
Desiccation and heat tolerance of Enterobacter sakazakii.
J Appl Microbiol. 2003;95(5):967-73. doi: 10.1046/j.1365-2672.2003.02067.x.
10
New insights on trehalose: a multifunctional molecule.
Glycobiology. 2003 Apr;13(4):17R-27R. doi: 10.1093/glycob/cwg047. Epub 2003 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验