Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, NS, Canada B4N 1J5.
Appl Environ Microbiol. 2011 Oct;77(19):6841-51. doi: 10.1128/AEM.00757-11. Epub 2011 Aug 5.
The food-borne pathogen Listeria monocytogenes is a problem for food processors and consumers alike, as the organism is resistant to harsh environmental conditions and inimical barriers implemented to prevent the survival and/or growth of harmful bacteria. One mechanism by which listeriae mediate survival is through the accumulation of compatible solutes, such as proline, betaine and carnitine. In other bacteria, including Escherichia coli, the synthesis and accumulation of another compatible solute, trehalose, are known to aid in the survival of stressed cells. The objective of this research was to investigate trehalose metabolism in L. monocytogenes, where the sugar is thought to be transferred across the cytoplasmic membrane via a specific phosphoenolpyruvate phosphotransferase system and phosphorylation to trehalose-6-phosphate (T6P). The latter is subsequently broken down into glucose and glucose-6-phosphate by α,α-(1,1) phosphotrehalase, the putative product of the treA gene. Here we report on an isogenic treA mutant of L. monocytogenes 568 (568:ΔTreA) which, relative to the wild-type strain, displays increased tolerances to multiple stressors, including heat, high osmolarity, and desiccation. This is the first study to examine the putative trehalose operon in L. monocytogenes, and we demonstrate that lmo1254 (treA) in L. monocytogenes 568 indeed encodes a phosphotrehalase required for the hydrolysis of T6P. Disruption of the treA gene results in the accumulation of T6P which is subsequently dephosphorylated to trehalose in the cytosol, thereby contributing to the stress hardiness observed in the treA mutant. This study highlights the importance of compatible solutes for microbial survival in adverse environments.
食源性病原体李斯特菌是食品加工者和消费者共同面临的问题,因为该生物体能够抵抗恶劣的环境条件和旨在防止有害细菌生存和/或生长的有害屏障。李斯特菌介导生存的一种机制是通过积累相容性溶质,如脯氨酸、甜菜碱和肉碱。在其他细菌中,包括大肠杆菌,已知合成和积累另一种相容性溶质海藻糖有助于应激细胞的存活。本研究的目的是研究李斯特菌中的海藻糖代谢,据认为该糖通过特定的磷酸烯醇丙酮酸磷酸转移酶系统和磷酸化作用转移到细胞质膜中,转化为海藻糖-6-磷酸(T6P)。后者随后被α,α-(1,1)磷酸海藻糖酶分解为葡萄糖和葡萄糖-6-磷酸,该酶的假定产物是 treA 基因的产物。在这里,我们报告了李斯特菌 568 的同基因 treA 突变体(568:ΔTreA),与野生型菌株相比,该突变体对多种胁迫剂(包括热、高渗透压和干燥)的耐受性增加。这是首次研究李斯特菌中假定的海藻糖操纵子,我们证明李斯特菌 568 中的 lmo1254(treA)确实编码了一种磷酸海藻糖酶,该酶需要水解 T6P。treA 基因的破坏导致 T6P 的积累,随后在细胞质中去磷酸化为海藻糖,从而导致在 treA 突变体中观察到的应激硬度增加。这项研究强调了相容性溶质对于微生物在不利环境中的生存的重要性。