Suppr超能文献

大鼠超声发声时的声门下压、气管气流和内在喉肌活动。

Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization.

机构信息

Dept. of Biology and National Center for Voice and Speech, Univ. of Utah, Salt Lake City, UT 84112, USA.

出版信息

J Neurophysiol. 2011 Nov;106(5):2580-92. doi: 10.1152/jn.00478.2011. Epub 2011 Aug 10.

Abstract

Vocal production requires complex planning and coordination of respiratory, laryngeal, and vocal tract movements, which are incompletely understood in most mammals. Rats produce a variety of whistles in the ultrasonic range that are of communicative relevance and of importance as a model system, but the sources of acoustic variability were mostly unknown. The goal was to identify sources of fundamental frequency variability. Subglottal pressure, tracheal airflow, and electromyographic (EMG) data from two intrinsic laryngeal muscles were measured during 22-kHz and 50-kHz call production in awake, spontaneously behaving adult male rats. During ultrasound vocalization, subglottal pressure ranged between 0.8 and 1.9 kPa. Pressure differences between call types were not significant. The relation between fundamental frequency and subglottal pressure within call types was inconsistent. Experimental manipulations of subglottal pressure had only small effects on fundamental frequency. Tracheal airflow patterns were also inconsistently associated with frequency. Pressure and flow seem to play a small role in regulation of fundamental frequency. Muscle activity, however, is precisely regulated and very sensitive to alterations, presumably because of effects on resonance properties in the vocal tract. EMG activity of cricothyroid and thyroarytenoid muscle was tonic in calls with slow or no fundamental frequency modulations, like 22-kHz and flat 50-kHz calls. Both muscles showed brief high-amplitude, alternating bursts at rates up to 150 Hz during production of frequency-modulated 50-kHz calls. A differentiated and fine regulation of intrinsic laryngeal muscles is critical for normal ultrasound vocalization. Many features of the laryngeal muscle activation pattern during ultrasound vocalization in rats are shared with other mammals.

摘要

发声需要对呼吸、喉部和声道运动进行复杂的规划和协调,而这在大多数哺乳动物中都不完全了解。老鼠会发出各种在超声范围内的口哨声,这些口哨声具有交际意义,并且是一个重要的模型系统,但声音可变性的来源大多是未知的。本研究的目的是确定基频可变性的来源。在清醒、自主行为的成年雄性大鼠中,在产生 22 kHz 和 50 kHz 叫声时,测量了两个内在喉肌的声门下压力、气管气流和肌电图(EMG)数据。在超声发声期间,声门下压力在 0.8 到 1.9 kPa 之间。不同叫声类型之间的压力差异并不显著。叫声类型内基频与声门下压力之间的关系不一致。声门下压力的实验操作对基频的影响很小。气流模式与频率的相关性也不一致。压力和流量似乎在基频调节中作用很小。然而,肌肉活动受到精确调节,对变化非常敏感,这可能是因为对声道共振特性的影响。环甲肌和杓状软骨肌的 EMG 活动在基频调制缓慢或没有的叫声中呈紧张状态,如 22 kHz 和扁平 50 kHz 叫声。在产生频率调制的 50 kHz 叫声时,两种肌肉都会在高达 150 Hz 的频率下短暂地产生高振幅、交替的爆发。内在喉肌的分化和精细调节对于正常的超声发声至关重要。大鼠在超声发声期间的喉肌激活模式的许多特征与其他哺乳动物共享。

相似文献

1
Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization.
J Neurophysiol. 2011 Nov;106(5):2580-92. doi: 10.1152/jn.00478.2011. Epub 2011 Aug 10.
2
Stereotypic laryngeal and respiratory motor patterns generate different call types in rat ultrasound vocalization.
J Exp Zool A Ecol Genet Physiol. 2013 Apr;319(4):213-24. doi: 10.1002/jez.1785. Epub 2013 Feb 19.
4
Rat ultrasonic vocalization shows features of a modular behavior.
J Neurosci. 2014 May 14;34(20):6874-8. doi: 10.1523/JNEUROSCI.0262-14.2014.
5
Rats concatenate 22 kHz and 50 kHz calls into a single utterance.
J Exp Biol. 2017 Mar 1;220(Pt 5):814-821. doi: 10.1242/jeb.151720.
6
Interactions of subglottal pressure and neuromuscular activation on fundamental frequency and intensity.
Laryngoscope. 2016 May;126(5):1123-30. doi: 10.1002/lary.25550. Epub 2016 Mar 12.
7
Role of deep breaths in ultrasonic vocal production of Sprague-Dawley rats.
J Neurophysiol. 2020 Mar 1;123(3):966-979. doi: 10.1152/jn.00590.2019. Epub 2020 Jan 22.
8
Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
Ann Otol Rhinol Laryngol. 1994 Oct;103(10):817-21. doi: 10.1177/000348949410301013.

引用本文的文献

1
Molecular changes, histopathology, and ultrasonic vocalization acoustic profiles of systemically dehydrated rats.
PLoS One. 2025 Apr 22;20(4):e0322187. doi: 10.1371/journal.pone.0322187. eCollection 2025.
2
Vocal registers expand signal diversity in vertebrate vocal communication.
Philos Trans R Soc Lond B Biol Sci. 2025 Apr 3;380(1923):20240006. doi: 10.1098/rstb.2024.0006.
3
The role of ultrasonic vocalizations in rat laryngological investigations.
Physiol Behav. 2025 May 15;294:114887. doi: 10.1016/j.physbeh.2025.114887. Epub 2025 Mar 19.
4
Ultrasonic Vocalization Acoustics After Recurrent Laryngeal Nerve Injury and Recovery.
Laryngoscope. 2025 Jul;135(7):2445-2453. doi: 10.1002/lary.32069. Epub 2025 Feb 20.
6
Stress-Induced Ultrasonic Vocalization in Laboratory Rats and Mice: A Scoping Review.
Brain Sci. 2024 Oct 31;14(11):1109. doi: 10.3390/brainsci14111109.
7
Acoustic complexity of pup isolation calls in Mongolian hamsters: 3-frequency phenomena and chaos.
Curr Zool. 2023 Jul 24;70(5):559-574. doi: 10.1093/cz/zoad036. eCollection 2024 Oct.
8
The breath shape controls intonation of mouse vocalizations.
Elife. 2024 Jul 4;13:RP93079. doi: 10.7554/eLife.93079.
9
Midbrain neurons important for the production of mouse ultrasonic vocalizations are not required for distress calls.
Curr Biol. 2024 Mar 11;34(5):1107-1113.e3. doi: 10.1016/j.cub.2024.01.016. Epub 2024 Jan 31.
10
Anatomy and mechanisms of vocal production in harvest mice.
J Exp Biol. 2024 Mar 1;227(5). doi: 10.1242/jeb.246553.

本文引用的文献

2
The RUB Cage: Respiration-Ultrasonic Vocalizations-Behavior Acquisition Setup for Assessing Emotional Memory in Rats.
Front Behav Neurosci. 2011 May 19;5:25. doi: 10.3389/fnbeh.2011.00025. eCollection 2011.
3
The central projections of the laryngeal nerves in the rat.
J Anat. 2011 Aug;219(2):217-28. doi: 10.1111/j.1469-7580.2011.01390.x. Epub 2011 May 22.
4
Elasticity and stress relaxation of a very small vocal fold.
J Biomech. 2011 Jul 7;44(10):1936-40. doi: 10.1016/j.jbiomech.2011.04.024. Epub 2011 May 8.
5
Amygdala connections with jaw, tongue and laryngo-pharyngeal premotor neurons.
Neuroscience. 2011 Mar 17;177:93-113. doi: 10.1016/j.neuroscience.2010.12.063. Epub 2011 Jan 4.
6
Social transmission of fear in rats: the role of 22-kHz ultrasonic distress vocalization.
PLoS One. 2010 Dec 1;5(12):e15077. doi: 10.1371/journal.pone.0015077.
7
Elasticity and stress relaxation of rhesus monkey (Macaca mulatta) vocal folds.
J Exp Biol. 2010 Sep;213(Pt 17):2924-32. doi: 10.1242/jeb.044404.
10
Effects of dopamine D1 and D2 receptor antagonists on laryngeal neurophysiology in the rat.
J Neurophysiol. 2009 Aug;102(2):1193-205. doi: 10.1152/jn.00121.2009. Epub 2009 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验