Suppr超能文献

追踪:电子激发在形成重离子径迹中的作用

Making tracks: electronic excitation roles in forming swift heavy ion tracks.

作者信息

Itoh N, Duffy D M, Khakshouri S, Stoneham A M

机构信息

40-202 Koikecho, Meito, Nagoya 465-0047, Japan.

出版信息

J Phys Condens Matter. 2009 Nov 25;21(47):474205. doi: 10.1088/0953-8984/21/47/474205. Epub 2009 Nov 5.

Abstract

Swift heavy ions cause material modification along their tracks, changes primarily due to their very dense electronic excitation. The available data for threshold stopping powers indicate two main classes of materials. Group I, with threshold stopping powers above about 10 keV nm(-1), includes some metals, crystalline semiconductors and a few insulators. Group II, with lower thresholds, comprises many insulators, amorphous materials and high T(c) oxide superconductors. We show that the systematic differences in behaviour result from different coupling of the dense excited electrons, holes and excitons to atomic (ionic) motions, and the consequent lattice relaxation. The coupling strength of excitons and charge carriers with the lattice is crucial. For group II, the mechanism appears to be the self-trapped exciton model of Itoh and Stoneham (1998 Nucl. Instrum. Methods Phys. Res. B 146 362): the local structural changes occur roughly when the exciton concentration exceeds the number of lattice sites. In materials of group I, excitons are not self-trapped and structural change requires excitation of a substantial fraction of bonding electrons, which induces spontaneous lattice expansion within a few hundred femtoseconds, as recently observed by laser-induced time-resolved x-ray diffraction of semiconductors. Our analysis addresses a number of experimental results, such as track morphology, the efficiency of track registration and the ratios of the threshold stopping power of various materials.

摘要

快速重离子会使其径迹沿线的材料发生改性,这种变化主要是由于其极高的电子激发密度。关于阈值阻止本领的现有数据表明存在两类主要材料。第一类,阈值阻止本领高于约10 keV·nm⁻¹,包括一些金属、晶体半导体和少数绝缘体。第二类,阈值较低,包括许多绝缘体、非晶材料和高Tc氧化物超导体。我们表明,行为上的系统性差异源于密集激发的电子、空穴和激子与原子(离子)运动的不同耦合以及随之而来的晶格弛豫。激子和电荷载流子与晶格的耦合强度至关重要。对于第二类材料,其机制似乎是伊藤和斯通纳姆(1998年,《核仪器与方法:物理研究》B辑,第146卷,第362页)提出的自陷激子模型:当激子浓度超过晶格位点数量时,局部结构变化大致就会发生。在第一类材料中,激子不会自陷,结构变化需要激发相当一部分成键电子,这会在几百飞秒内引起自发晶格膨胀,正如最近通过半导体的激光诱导时间分辨X射线衍射所观察到的那样。我们的分析涉及许多实验结果,如径迹形态、径迹记录效率以及各种材料的阈值阻止本领之比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验