Suppr超能文献

用于探索电压依赖性离子通道的粗粒度模型。

Coarse grained model for exploring voltage dependent ion channels.

作者信息

Dryga Anatoly, Chakrabarty Suman, Vicatos Spyridon, Warshel Arieh

机构信息

Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, USA.

出版信息

Biochim Biophys Acta. 2012 Feb;1818(2):303-17. doi: 10.1016/j.bbamem.2011.07.043. Epub 2011 Aug 5.

Abstract

The relationship between the membrane voltage and the gating of voltage activated ion channels and other systems have been a problem of great current interest. Unfortunately, reliable molecular simulations of external voltage effects present a major challenge, since meaningful converging microscopic simulations are not yet available and macroscopic treatments involve major uncertainties in terms of the dielectric used and other key features. This work extends our coarse grained (CG) model to simulations of membrane/protein systems under external potential. Special attention is devoted to a consistent modeling of the effect of external potential due to the electrodes, emphasizing semimacroscopic description of the electrolytes in the solution regions between the membranes and the electrodes, as well as the coupling between the combined potential from the electrodes plus the electrolytes and the protein ionized groups. We also provide a clear connection to microscopic treatment of the electrolytes and thus can explore possible conceptual problems that are hard to resolve by other current approaches. For example, we obtain a clear description of the charge distribution in the entire electrolyte system, including near the electrodes in membrane/electrodes systems (where continuum models do not seem to provide the relevant results). Furthermore, the present treatment provides an insight on the distribution of the electrolyte charges before and after equilibration across the membrane, and thus on the nature of the gating charge. The different aspects of the model have been carefully validated by considering problems ranging for the simple Debye-Huckel, and the Gouy-Chapman models to the evaluation of the electrolyte distribution between two electrodes, as well as the effect of extending the simulation system by periodic replicas. Overall the clear connection to microscopic descriptions combined with the power of the CG modeling seems to offer a powerful tool for exploring the balance between the protein conformational energy and the interaction with the external potential in voltage activated channels. To illustrate these features we present a preliminary study of the gating charge in the voltage activated Kv1.2 channel, using the actual change in the electrolyte charge distribution rather than the conventional macroscopic estimate. We also discuss other special features of the model, which include the ability to capture the effect of changes in the protonation states of the protein residues during the close to open voltage induced transition. This article is part of a Special Issue entitled: Membrane protein structure and function.

摘要

膜电压与电压激活离子通道及其他系统的门控之间的关系一直是当前备受关注的问题。不幸的是,对外部电压效应进行可靠的分子模拟面临重大挑战,因为尚无有意义的收敛微观模拟,而宏观处理在所用介电常数及其他关键特征方面存在重大不确定性。这项工作将我们的粗粒化(CG)模型扩展至外部电势下膜/蛋白质系统的模拟。特别关注对电极引起的外部电势效应进行一致建模,强调对膜与电极之间溶液区域中电解质的半宏观描述,以及电极加电解质的组合电势与蛋白质电离基团之间的耦合。我们还建立了与电解质微观处理的清晰联系,从而能够探索其他现有方法难以解决的可能概念性问题。例如,我们对整个电解质系统中的电荷分布有清晰描述,包括膜/电极系统中电极附近(连续介质模型似乎无法提供相关结果)。此外,当前处理方法能深入了解跨膜平衡前后电解质电荷的分布,进而了解门控电荷的性质。通过考虑从简单的德拜 - 休克尔模型和古依 - 查普曼模型到评估两个电极之间电解质分布的各种问题,以及通过周期性重复扩展模拟系统的影响,对模型的不同方面进行了仔细验证。总体而言,与微观描述的清晰联系以及CG建模的能力似乎为探索电压激活通道中蛋白质构象能量与外部电势相互作用之间的平衡提供了有力工具。为说明这些特征,我们对电压激活的Kv1.2通道中的门控电荷进行了初步研究,使用电解质电荷分布的实际变化而非传统的宏观估计。我们还讨论了该模型的其他特殊特征,包括能够捕捉在接近开放电压诱导转变期间蛋白质残基质子化状态变化的影响。本文是名为:膜蛋白结构与功能的特刊的一部分。

相似文献

1
Coarse grained model for exploring voltage dependent ion channels.
Biochim Biophys Acta. 2012 Feb;1818(2):303-17. doi: 10.1016/j.bbamem.2011.07.043. Epub 2011 Aug 5.
2
Validating a Coarse-Grained Voltage Activation Model by Comparing Its Performance to the Results of Monte Carlo Simulations.
J Phys Chem B. 2017 Dec 21;121(50):11284-11291. doi: 10.1021/acs.jpcb.7b09530. Epub 2017 Dec 11.
3
Realistic simulation of the activation of voltage-gated ion channels.
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3335-40. doi: 10.1073/pnas.1121094109. Epub 2012 Feb 13.
4
Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2128-33. doi: 10.1073/pnas.1324014111. Epub 2014 Jan 24.
5
Equilibrium fluctuation relations for voltage coupling in membrane proteins.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt A):2985-97. doi: 10.1016/j.bbamem.2015.08.008. Epub 2015 Aug 17.
6
A Microscopic Capacitor Model of Voltage Coupling in Membrane Proteins: Gating Charge Fluctuations in Ci-VSD.
J Phys Chem B. 2016 Jan 28;120(3):418-32. doi: 10.1021/acs.jpcb.5b10956. Epub 2016 Jan 14.
7
Modeling gating charge and voltage changes in response to charge separation in membrane proteins.
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11353-8. doi: 10.1073/pnas.1411573111. Epub 2014 Jul 21.
9
Emerging issues of connexin channels: biophysics fills the gap.
Q Rev Biophys. 2001 Aug;34(3):325-472. doi: 10.1017/s0033583501003705.
10
Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states.
Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):22-39. doi: 10.1016/j.bbamem.2017.04.028. Epub 2017 May 2.

引用本文的文献

1
Catalytic mechanism study of ATP-citrate lyase during citryl-CoA synthesis process.
iScience. 2024 Jul 27;27(9):110605. doi: 10.1016/j.isci.2024.110605. eCollection 2024 Sep 20.
2
Exploring the Phospholipid Transport Mechanism of ATP8A1-CDC50.
Biomedicines. 2023 Feb 13;11(2):546. doi: 10.3390/biomedicines11020546.
3
The 70-year search for the voltage-sensing mechanism of ion channels.
J Physiol. 2022 Jul;600(14):3227-3247. doi: 10.1113/JP282780. Epub 2022 Jul 6.
5
Inferring functional units in ion channel pores via relative entropy.
Eur Biophys J. 2021 Jan;50(1):37-57. doi: 10.1007/s00249-020-01480-7. Epub 2021 Feb 1.
6
Voltage-dependent gating in K channels: experimental results and quantitative models.
Pflugers Arch. 2020 Jan;472(1):27-47. doi: 10.1007/s00424-019-02336-6. Epub 2019 Dec 20.
7
Simulation of Gating Currents of the Shaker K Channel Using a Brownian Model of the Voltage Sensor.
Biophys J. 2019 Nov 19;117(10):2005-2019. doi: 10.1016/j.bpj.2019.09.039. Epub 2019 Oct 8.
8
On the control of the proton current in the voltage-gated proton channel Hv1.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10321-10326. doi: 10.1073/pnas.1809766115. Epub 2018 Sep 25.
9
Validating a Coarse-Grained Voltage Activation Model by Comparing Its Performance to the Results of Monte Carlo Simulations.
J Phys Chem B. 2017 Dec 21;121(50):11284-11291. doi: 10.1021/acs.jpcb.7b09530. Epub 2017 Dec 11.
10
Analyzing the electrogenicity of cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7810-5. doi: 10.1073/pnas.1608118113. Epub 2016 Jun 28.

本文引用的文献

1
Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems.
Annu Rev Phys Chem. 2011;62:41-64. doi: 10.1146/annurev-physchem-032210-103335.
2
On the energetics of translocon-assisted insertion of charged transmembrane helices into membranes.
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17598-603. doi: 10.1073/pnas.1012207107. Epub 2010 Sep 27.
3
Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel.
Biophys J. 2010 May 19;98(10):2189-98. doi: 10.1016/j.bpj.2010.02.056.
4
Ketosteroid isomerase provides further support for the idea that enzymes work by electrostatic preorganization.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4075-80. doi: 10.1073/pnas.0914579107. Epub 2010 Feb 11.
7
Insights from theory and simulation on the electrical double layer.
Phys Chem Chem Phys. 2009 May 28;11(20):3822-30. doi: 10.1039/b815946g. Epub 2009 Mar 3.
8
Ion-ion correlation attraction in a molecular solvent.
J Chem Phys. 2008 Nov 14;129(18):184503. doi: 10.1063/1.2985609.
9
Test of the Gouy-Chapman theory for a charged lipid membrane against explicit-solvent molecular dynamics simulations.
Phys Rev Lett. 2008 Jul 18;101(3):038103. doi: 10.1103/PhysRevLett.101.038103.
10
Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment.
Nature. 2007 Nov 15;450(7168):376-82. doi: 10.1038/nature06265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验