Okamoto Koji, Kondo-Okamoto Noriko
Osaka University, Suita, Japan.
Biochim Biophys Acta. 2012 May;1820(5):595-600. doi: 10.1016/j.bbagen.2011.08.001. Epub 2011 Aug 7.
Mitochondria are dynamic organelles that frequently change their number, size, shape, and distribution in response to intra- and extracellular cues. After proliferated from pre-existing ones, fresh mitochondria enter constant cycles of fission and fusion that organize them into two distinct states - "individual state" and "network state". When compromised with various injuries, solitary mitochondria are subjected to organelle degradation. This clearance pathway relies on autophagy, a self-eating process that plays key roles in manifold cell activities. Recent studies reveal that defects in autophagic degradation selective for mitochondria (mitophagy) are associated with neurodegenerative diseases, highlighting the physiological relevance to cellular functions.
Here we review recent progress regarding a link between mitochondria and autophagy in yeast and multicellular eukaryotes. In particular, fundamental principles underlying mitophagy, and mitochondrial quality control are emphasized. Accumulating evidence also implicates nonselective autophagy in the management of mitochondrial fitness. Conversely, mitochondria are suggested to serve as signaling platforms vital for regulating autophagy. These interdependent relationships are likely to coordinate metabolic plasticity in the cell.
Mitochondria and autophagy are elaborately linked homeostatic elements that act in response to changes in cellular environment such as energy, nutrient, and stress. How cells integrate these double membrane-bound systems still remains elusive.
Interplay between mitochondria and autophagy seems to be evolutionarily conserved. Defects in one of these elements could simultaneously impair the other, resulting in risk increments for various human diseases. This article is part of a Special Issue entitled Biochemistry of Mitochondria.
线粒体是动态细胞器,会根据细胞内和细胞外信号频繁改变其数量、大小、形状和分布。新的线粒体由已有的线粒体增殖而来后,会进入持续的分裂和融合循环,从而将它们组织成两种不同状态——“个体状态”和“网络状态”。当受到各种损伤时,单个线粒体就会发生细胞器降解。这种清除途径依赖于自噬,即一种在多种细胞活动中起关键作用的自我吞噬过程。最近的研究表明,线粒体选择性自噬(线粒体自噬)中的自噬降解缺陷与神经退行性疾病有关,这凸显了其与细胞功能的生理相关性。
在此,我们综述了酵母和多细胞真核生物中线粒体与自噬之间联系的最新进展。特别强调了线粒体自噬和线粒体质量控制的基本原理。越来越多的证据还表明非选择性自噬参与了线粒体健康的管理。相反,线粒体被认为是调节自噬的重要信号平台。这些相互依存的关系可能协调细胞中的代谢可塑性。
线粒体和自噬是精心连接的稳态元件,它们会根据能量、营养和应激等细胞环境的变化做出反应。细胞如何整合这两个双膜结合系统仍然难以捉摸。
线粒体和自噬之间的相互作用似乎在进化上是保守的。这些元件中的一个出现缺陷可能同时损害另一个,从而增加各种人类疾病的风险。本文是名为“线粒体生物化学”的特刊的一部分。