Suppr超能文献

复杂运动中感知与眼球运动的差异。

Differences between perception and eye movements during complex motions.

机构信息

Department of Mathematics and Statistics, Colby College, Waterville, ME, USA.

出版信息

J Vestib Res. 2011;21(4):193-208. doi: 10.3233/VES-2011-0416.

Abstract

During passive whole-body motion in the dark, the motion perceived by subjects may or may not be veridical. Either way, reflexive eye movements are typically compensatory for the perceived motion. However, studies are discovering that for certain motions, the perceived motion and eye movements are incompatible. The incompatibility has not been explained by basic differences in gain or time constants of decay. This paper uses three-dimensional modeling to investigate gondola centrifugation (with a tilting carriage) and off-vertical axis rotation. The first goal was to determine whether known differences between perceived motions and eye movements are true differences when all three-dimensional combinations of angular and linear components are considered. The second goal was to identify the likely areas of processing in which perceived motions match or differ from eye movements, whether in angular components, linear components and/or dynamics. The results were that perceived motions are more compatible with eye movements in three dimensions than the one-dimensional components indicate, and that they differ more in their linear than their angular components. In addition, while eye movements are consistent with linear filtering processes, perceived motion has dynamics that cannot be explained by basic differences in time constants, filtering, or standard GIF-resolution processes.

摘要

在黑暗中被动进行全身运动时,受试者感知到的运动可能是真实的,也可能不是真实的。无论哪种方式,反射性眼球运动通常都是对感知运动的补偿。然而,研究发现,对于某些运动,感知运动和眼球运动是不兼容的。这种不兼容性不能用增益或时间常数衰减的基本差异来解释。本文使用三维建模来研究吊舱离心(带倾斜车架)和偏离垂直轴旋转。第一个目标是确定当考虑所有三维角和线性分量的组合时,感知运动和眼球运动之间的已知差异是否是真实的差异。第二个目标是确定感知运动与眼球运动匹配或不同的可能处理区域,无论是在角分量、线性分量和/或动力学方面。结果表明,感知运动在三维空间中的兼容性比一维分量所指示的要高,而且它们在线性分量上的差异大于在角分量上的差异。此外,虽然眼球运动与线性滤波过程一致,但感知运动的动力学不能用时间常数、滤波或标准 GIF 分辨率过程的基本差异来解释。

相似文献

1
Differences between perception and eye movements during complex motions.
J Vestib Res. 2011;21(4):193-208. doi: 10.3233/VES-2011-0416.
3
Tilt and translation motion perception during off-vertical axis rotation.
Exp Brain Res. 2007 Sep;182(3):365-77. doi: 10.1007/s00221-007-0994-0. Epub 2007 Jun 13.
4
Phase-linking and the perceived motion during off-vertical axis rotation.
Biol Cybern. 2010 Jan;102(1):9-29. doi: 10.1007/s00422-009-0347-0. Epub 2009 Nov 24.
5
Eye movements evoked by proprioceptive stimulation along the body axis in humans.
Exp Brain Res. 1998 Jun;120(4):450-60. doi: 10.1007/s002210050418.
6
Alteration of eye movements and motion perception in microgravity.
Brain Res Brain Res Rev. 1998 Nov;28(1-2):161-72. doi: 10.1016/s0165-0173(98)00036-8.
9
Early components of the human vestibulo-ocular response to head rotation: latency and gain.
J Neurophysiol. 2000 Jul;84(1):376-89. doi: 10.1152/jn.2000.84.1.376.
10
Velocity storage contribution to vestibular self-motion perception in healthy human subjects.
J Neurophysiol. 2011 Jan;105(1):209-23. doi: 10.1152/jn.00154.2010. Epub 2010 Nov 10.

引用本文的文献

1
Head-Eye Vestibular Motion Therapy Affects the Mental and Physical Health of Severe Chronic Postconcussion Patients.
Front Neurol. 2017 Aug 22;8:414. doi: 10.3389/fneur.2017.00414. eCollection 2017.
2
Modeling human perception of orientation in altered gravity.
Front Syst Neurosci. 2015 May 5;9:68. doi: 10.3389/fnsys.2015.00068. eCollection 2015.
3
Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects.
J Neurophysiol. 2015 Jun 1;113(10):3866-92. doi: 10.1152/jn.00171.2013. Epub 2015 Feb 4.
4
Human perceptual overestimation of whole body roll tilt in hypergravity.
J Neurophysiol. 2015 Apr 1;113(7):2062-77. doi: 10.1152/jn.00095.2014. Epub 2014 Dec 24.

本文引用的文献

1
Internal models and neural computation in the vestibular system.
Exp Brain Res. 2010 Jan;200(3-4):197-222. doi: 10.1007/s00221-009-2054-4.
2
Phase-linking and the perceived motion during off-vertical axis rotation.
Biol Cybern. 2010 Jan;102(1):9-29. doi: 10.1007/s00422-009-0347-0. Epub 2009 Nov 24.
4
Spatial disorientation in gondola centrifuges predicted by the form of motion as a whole in 3-D.
Aviat Space Environ Med. 2009 Feb;80(2):125-34. doi: 10.3357/asem.2344.2009.
5
Translational motion perception and vestiboocular responses in the absence of non-inertial cues.
Exp Brain Res. 2008 Jan;184(1):13-29. doi: 10.1007/s00221-007-1072-3. Epub 2007 Aug 7.
6
Tilt and translation motion perception during off-vertical axis rotation.
Exp Brain Res. 2007 Sep;182(3):365-77. doi: 10.1007/s00221-007-0994-0. Epub 2007 Jun 13.
7
Verticality perception during off-vertical axis rotation.
J Neurophysiol. 2007 May;97(5):3256-68. doi: 10.1152/jn.01333.2006. Epub 2007 Feb 28.
8
Bayesian processing of vestibular information.
Biol Cybern. 2007 Apr;96(4):389-404. doi: 10.1007/s00422-006-0133-1. Epub 2006 Dec 5.
9
Multiple sensory cues underlying the perception of translation and path.
J Neurophysiol. 2007 Feb;97(2):1100-13. doi: 10.1152/jn.00694.2006. Epub 2006 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验