Suppr超能文献

使用数字全息显微镜对胶质瘤肿瘤进行分级。

Grading of glioma tumors using digital holographic microscopy.

作者信息

Calin Violeta L, Mihailescu Mona, Petrescu George E D, Lisievici Mihai Gheorghe, Tarba Nicolae, Calin Daniel, Ungureanu Victor Gabriel, Pasov Diana, Brehar Felix M, Gorgan Radu M, Moisescu Mihaela G, Savopol Tudor

机构信息

Biophysics and Cellular Biotechnology Dept., Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania.

Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania.

出版信息

Heliyon. 2024 Apr 23;10(9):e29897. doi: 10.1016/j.heliyon.2024.e29897. eCollection 2024 May 15.

Abstract

Gliomas are the most common type of cerebral tumors; they occur with increasing incidence in the last decade and have a high rate of mortality. For efficient treatment, fast accurate diagnostic and grading of tumors are imperative. Presently, the grading of tumors is established by histopathological evaluation, which is a time-consuming procedure and relies on the pathologists' experience. Here we propose a supervised machine learning procedure for tumor grading which uses quantitative phase images of unstained tissue samples acquired by digital holographic microscopy. The algorithm is using an extensive set of statistical and texture parameters computed from these images. The procedure has been able to classify six classes of images (normal tissue and five glioma subtypes) and to distinguish between gliomas types from grades II to IV (with the highest sensitivity and specificity for grade II astrocytoma and grade III oligodendroglioma and very good scores in recognizing grade III anaplastic astrocytoma and grade IV glioblastoma). The procedure bolsters clinical diagnostic accuracy, offering a swift and reliable means of tumor characterization and grading, ultimately the enhancing treatment decision-making process.

摘要

神经胶质瘤是最常见的脑肿瘤类型;在过去十年中其发病率不断上升,且死亡率很高。为了进行有效的治疗,快速准确地诊断和分级肿瘤势在必行。目前,肿瘤分级是通过组织病理学评估来确定的,这是一个耗时的过程,并且依赖于病理学家的经验。在此,我们提出一种用于肿瘤分级的监督机器学习程序,该程序使用通过数字全息显微镜获取的未染色组织样本的定量相位图像。该算法使用从这些图像中计算出的大量统计和纹理参数。该程序能够对六类图像(正常组织和五种神经胶质瘤亚型)进行分类,并区分II至IV级神经胶质瘤类型(对II级星形细胞瘤和III级少突胶质细胞瘤具有最高的敏感性和特异性,在识别III级间变性星形细胞瘤和IV级胶质母细胞瘤方面得分也很高)。该程序提高了临床诊断准确性,提供了一种快速可靠的肿瘤特征描述和分级方法,最终增强了治疗决策过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db7d/11061684/a47fe2b7c363/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验