Mertz Blake, Struts Andrey V, Feller Scott E, Brown Michael F
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
Biochim Biophys Acta. 2012 Feb;1818(2):241-51. doi: 10.1016/j.bbamem.2011.08.003. Epub 2011 Aug 8.
Rhodopsin has served as the primary model for studying G protein-coupled receptors (GPCRs)-the largest group in the human genome, and consequently a primary target for pharmaceutical development. Understanding the functions and activation mechanisms of GPCRs has proven to be extraordinarily difficult, as they are part of a complex signaling cascade and reside within the cell membrane. Although X-ray crystallography has recently solved several GPCR structures that may resemble the activated conformation, the dynamics and mechanism of rhodopsin activation continue to remain elusive. Notably solid-state ((2))H NMR spectroscopy provides key information pertinent to how local dynamics of the retinal ligand change during rhodopsin activation. When combined with molecular mechanics simulations of proteolipid membranes, a new paradigm for the rhodopsin activation process emerges. Experiment and simulation both suggest that retinal isomerization initiates the rhodopsin photocascade to yield not a single activated structure, but rather an ensemble of activated conformational states. This article is part of a Special Issue entitled: Membrane protein structure and function.
视紫红质一直是研究G蛋白偶联受体(GPCRs)的主要模型——GPCRs是人类基因组中最大的一类,因此也是药物开发的主要靶点。事实证明,了解GPCRs的功能和激活机制极其困难,因为它们是复杂信号级联反应的一部分,且位于细胞膜内。尽管X射线晶体学最近解析出了几个可能类似于激活构象的GPCR结构,但视紫红质激活的动力学和机制仍然难以捉摸。值得注意的是,固态(2)H核磁共振光谱提供了与视紫红质激活过程中视网膜配体的局部动力学如何变化相关的关键信息。当与蛋白脂质膜的分子力学模拟相结合时,视紫红质激活过程的新范式就出现了。实验和模拟均表明,视网膜异构化启动了视紫红质光信号级联反应,产生的不是单一的激活结构,而是一组激活的构象状态。本文是名为:膜蛋白结构与功能的特刊的一部分。