Suppr超能文献

分子模拟和固态核磁共振研究视紫红质激活过程中的动态结构。

Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation.

作者信息

Mertz Blake, Struts Andrey V, Feller Scott E, Brown Michael F

机构信息

Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.

出版信息

Biochim Biophys Acta. 2012 Feb;1818(2):241-51. doi: 10.1016/j.bbamem.2011.08.003. Epub 2011 Aug 8.

Abstract

Rhodopsin has served as the primary model for studying G protein-coupled receptors (GPCRs)-the largest group in the human genome, and consequently a primary target for pharmaceutical development. Understanding the functions and activation mechanisms of GPCRs has proven to be extraordinarily difficult, as they are part of a complex signaling cascade and reside within the cell membrane. Although X-ray crystallography has recently solved several GPCR structures that may resemble the activated conformation, the dynamics and mechanism of rhodopsin activation continue to remain elusive. Notably solid-state ((2))H NMR spectroscopy provides key information pertinent to how local dynamics of the retinal ligand change during rhodopsin activation. When combined with molecular mechanics simulations of proteolipid membranes, a new paradigm for the rhodopsin activation process emerges. Experiment and simulation both suggest that retinal isomerization initiates the rhodopsin photocascade to yield not a single activated structure, but rather an ensemble of activated conformational states. This article is part of a Special Issue entitled: Membrane protein structure and function.

摘要

视紫红质一直是研究G蛋白偶联受体(GPCRs)的主要模型——GPCRs是人类基因组中最大的一类,因此也是药物开发的主要靶点。事实证明,了解GPCRs的功能和激活机制极其困难,因为它们是复杂信号级联反应的一部分,且位于细胞膜内。尽管X射线晶体学最近解析出了几个可能类似于激活构象的GPCR结构,但视紫红质激活的动力学和机制仍然难以捉摸。值得注意的是,固态(2)H核磁共振光谱提供了与视紫红质激活过程中视网膜配体的局部动力学如何变化相关的关键信息。当与蛋白脂质膜的分子力学模拟相结合时,视紫红质激活过程的新范式就出现了。实验和模拟均表明,视网膜异构化启动了视紫红质光信号级联反应,产生的不是单一的激活结构,而是一组激活的构象状态。本文是名为:膜蛋白结构与功能的特刊的一部分。

相似文献

1
Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation.
Biochim Biophys Acta. 2012 Feb;1818(2):241-51. doi: 10.1016/j.bbamem.2011.08.003. Epub 2011 Aug 8.
2
Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
Biochim Biophys Acta. 2010 Feb;1798(2):177-93. doi: 10.1016/j.bbamem.2009.08.013. Epub 2009 Aug 28.
3
Retinal conformation and dynamics in activation of rhodopsin illuminated by solid-state H NMR spectroscopy.
Photochem Photobiol. 2009 Mar-Apr;85(2):442-53. doi: 10.1111/j.1751-1097.2008.00510.x.
4
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8263-8. doi: 10.1073/pnas.1014692108. Epub 2011 Apr 28.
5
Relevance of rhodopsin studies for GPCR activation.
Biochim Biophys Acta. 2014 May;1837(5):674-82. doi: 10.1016/j.bbabio.2013.09.002. Epub 2013 Sep 13.
6
Structural analysis and dynamics of retinal chromophore in dark and meta I states of rhodopsin from 2H NMR of aligned membranes.
J Mol Biol. 2007 Sep 7;372(1):50-66. doi: 10.1016/j.jmb.2007.03.046. Epub 2007 Mar 24.
7
Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
J Mol Biol. 2008 Oct 3;382(2):539-55. doi: 10.1016/j.jmb.2008.06.084. Epub 2008 Jul 7.
8
Amino acid conservation and interactions in rhodopsin: probing receptor activation by NMR spectroscopy.
Biochim Biophys Acta. 2014 May;1837(5):683-93. doi: 10.1016/j.bbabio.2013.10.007. Epub 2013 Oct 29.
9
A Conserved Proline Hinge Mediates Helix Dynamics and Activation of Rhodopsin.
Structure. 2020 Sep 1;28(9):1004-1013.e4. doi: 10.1016/j.str.2020.05.004. Epub 2020 May 28.
10
Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy.
J Magn Reson. 2015 Apr;253:111-8. doi: 10.1016/j.jmr.2014.12.014.

引用本文的文献

1
Interaction and dynamics of chemokine receptor CXCR4 binding with CXCL12 and hBD-3.
Commun Chem. 2024 Sep 13;7(1):205. doi: 10.1038/s42004-024-01280-6.
2
Coordination of bilayer properties by an inward-rectifier K channel is a cooperative process driven by protein-lipid interaction.
J Struct Biol X. 2024 May 28;9:100101. doi: 10.1016/j.yjsbx.2024.100101. eCollection 2024 Jun.
3
Strategies for acquisition of resonance assignment spectra of highly dynamic membrane proteins: a GPCR case study.
J Biomol NMR. 2023 Aug;77(4):191-202. doi: 10.1007/s10858-023-00421-8. Epub 2023 Jul 26.
4
Cholesterol Biases the Conformational Landscape of the Chemokine Receptor CCR3: A MAS SSNMR-Filtered Molecular Dynamics Study.
J Chem Inf Model. 2023 May 22;63(10):3068-3085. doi: 10.1021/acs.jcim.2c01546. Epub 2023 May 1.
5
Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins.
J Membr Biol. 2019 Oct;252(4-5):425-449. doi: 10.1007/s00232-019-00095-0. Epub 2019 Sep 30.
6
Specificity of the chromophore-binding site in human cone opsins.
J Biol Chem. 2019 Apr 12;294(15):6082-6093. doi: 10.1074/jbc.RA119.007587. Epub 2019 Feb 15.
7
Synthesis of 9-CD-9--Retinal Cofactor of Isorhodopsin.
Tetrahedron Lett. 2018 Dec 19;59(51):4521-4524. doi: 10.1016/j.tetlet.2018.11.034. Epub 2018 Nov 10.
8
Investigation of rhodopsin dynamics in its signaling state by solid-state deuterium NMR spectroscopy.
Methods Mol Biol. 2015;1271:133-58. doi: 10.1007/978-1-4939-2330-4_10.
9
The G protein-coupled receptor rhodopsin: a historical perspective.
Methods Mol Biol. 2015;1271:3-18. doi: 10.1007/978-1-4939-2330-4_1.
10
Structure-based simulations reveal concerted dynamics of GPCR activation.
Proteins. 2014 Oct;82(10):2538-51. doi: 10.1002/prot.24617. Epub 2014 Jun 9.

本文引用的文献

1
Steric and electronic influences on the torsional energy landscape of retinal.
Biophys J. 2011 Aug 3;101(3):L17-9. doi: 10.1016/j.bpj.2011.06.020.
2
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8263-8. doi: 10.1073/pnas.1014692108. Epub 2011 Apr 28.
3
Crystal structure of metarhodopsin II.
Nature. 2011 Mar 31;471(7340):651-5. doi: 10.1038/nature09789. Epub 2011 Mar 9.
4
The structural basis of agonist-induced activation in constitutively active rhodopsin.
Nature. 2011 Mar 31;471(7340):656-60. doi: 10.1038/nature09795. Epub 2011 Mar 9.
5
Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation.
Nat Struct Mol Biol. 2011 Mar;18(3):392-4. doi: 10.1038/nsmb.1982. Epub 2011 Jan 30.
6
Structure and function of an irreversible agonist-β(2) adrenoceptor complex.
Nature. 2011 Jan 13;469(7329):236-40. doi: 10.1038/nature09665.
7
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.
Nature. 2011 Jan 13;469(7329):175-80. doi: 10.1038/nature09648.
9
Role of aggregation in rhodopsin signal transduction.
Biochemistry. 2010 Jun 15;49(23):4827-32. doi: 10.1021/bi100478j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验