Suppr超能文献

用于磁共振成像应用的混合磁性纳米结构 (MNS)。

Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications.

机构信息

Department of Materials Science & Engineering, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA.

出版信息

Adv Drug Deliv Rev. 2011 Nov;63(14-15):1282-99. doi: 10.1016/j.addr.2011.07.001. Epub 2011 Aug 6.

Abstract

The development of MRI contrast agents has experienced its version of the gilded age over the past decade, thanks largely to the rapid advances in nanotechnology. In addition to progress in single mode contrast agents, which ushered in unprecedented R(1) or R(2) sensitivities, there has also been a boon in the development of agents covering more than one mode of detection. These include T(1)-PET, T(2)-PET T(1)-optical, T(2)-optical, T(1)-T(2) agents and many others. In this review, we describe four areas which we feel have experienced particular growth due to nanotechnology, specifically T(2) magnetic nanostructure development, T(1)/T(2)-optical dual mode agents, and most recently the T(1)-T(2) hybrid imaging systems. In each of these systems, we describe applications including in vitro, in vivo usage and assay development. In all, while the benefits and drawbacks of most MRI contrast agents depend on the application at hand, the recent development in multimodal nanohybrids may curtail the shortcomings of single mode agents in diagnostic and clinical settings by synergistically incorporating functionality. It is hoped that as nanotechnology advances over the next decade, it will produce agents with increased diagnostics and assay relevant capabilities in streamlined packages that can meaningfully improve patient care and prognostics. In this review article, we focus on T(2) materials, its surface functionalization and coupling with optical and/or T(1) agents.

摘要

在过去的十年中,由于纳米技术的快速发展,MRI 对比剂的发展经历了一个镀金时代。除了单模式对比剂的进步带来了前所未有的 R(1)或 R(2)灵敏度之外,还开发出了多种检测模式的对比剂,包括 T(1)-PET、T(2)-PET、T(1)-光学、T(2)-光学、T(1)-T(2) 对比剂等。在这篇综述中,我们描述了四个由于纳米技术而经历了特别发展的领域,特别是 T(2)磁性纳米结构的发展、T(1)/T(2)-光学双模对比剂,以及最近的 T(1)-T(2)混合成像系统。在这些系统中的每一个,我们都描述了包括体外、体内应用和检测方法开发。总之,虽然大多数 MRI 对比剂的优缺点取决于当前的应用,但最近多模态纳米杂化材料的发展可能通过协同整合功能来弥补单模式造影剂在诊断和临床环境中的缺点。希望在未来十年中,纳米技术的进步将产生具有更高诊断和检测相关功能的试剂,并以简化的包装形式提供,从而可以显著改善患者的护理和预后。在这篇综述文章中,我们重点介绍了 T(2)材料及其表面功能化,并与光学和/或 T(1)试剂进行了偶联。

相似文献

1
Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications.
Adv Drug Deliv Rev. 2011 Nov;63(14-15):1282-99. doi: 10.1016/j.addr.2011.07.001. Epub 2011 Aug 6.
2
Nanoparticle-based systems for T(1)-weighted magnetic resonance imaging contrast agents.
Int J Mol Sci. 2013 May 21;14(5):10591-607. doi: 10.3390/ijms140510591.
3
Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers.
Nanomedicine (Lond). 2017 Apr;12(7):811-817. doi: 10.2217/nnm-2016-0413. Epub 2017 Mar 21.
4
Magnetically engineered semiconductor quantum dots as multimodal imaging probes.
Adv Mater. 2014 Oct 8;26(37):6367-86. doi: 10.1002/adma.201402296. Epub 2014 Sep 1.
5
Intelligent Design of Ultrasmall Iron Oxide Nanoparticle-Based Theranostics.
ACS Appl Mater Interfaces. 2021 Sep 29;13(38):45119-45129. doi: 10.1021/acsami.1c13341. Epub 2021 Sep 17.
7
Noninvasive Imaging of Liposomal Delivery of Superparamagnetic Iron Oxide Nanoparticles to Orthotopic Human Breast Tumor in Mice.
Pharm Res. 2015 Nov;32(11):3746-3755. doi: 10.1007/s11095-015-1736-9. Epub 2015 Jun 16.
8
New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging.
PLoS One. 2009 Oct 29;4(10):e7628. doi: 10.1371/journal.pone.0007628.
9
Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents.
Nanotechnology. 2011 Apr 15;22(15):155101. doi: 10.1088/0957-4484/22/15/155101. Epub 2011 Mar 10.
10
Nanoscale metal-organic frameworks for biomedical imaging and drug delivery.
Acc Chem Res. 2011 Oct 18;44(10):957-68. doi: 10.1021/ar200028a. Epub 2011 Jun 7.

引用本文的文献

1
Targeting breast cancer: the promise of phage-based nanomedicines.
Breast Cancer Res Treat. 2025 Jun;211(3):561-580. doi: 10.1007/s10549-025-07696-5. Epub 2025 Apr 17.
3
Uniform FeO/GdO-DHCA nanocubes for dual-mode magnetic resonance imaging.
Beilstein J Nanotechnol. 2020 Jul 8;11:1000-1009. doi: 10.3762/bjnano.11.84. eCollection 2020.
5
Enabling biodegradable functional biomaterials for the management of neurological disorders.
Adv Drug Deliv Rev. 2019 Aug;148:219-238. doi: 10.1016/j.addr.2019.06.004. Epub 2019 Jun 20.
6
Iron Oxide Colloidal Nanoclusters as Theranostic Vehicles and Their Interactions at the Cellular Level.
Nanomaterials (Basel). 2018 May 9;8(5):315. doi: 10.3390/nano8050315.
7
Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma.
Int J Nanomedicine. 2017 Mar 14;12:2033-2044. doi: 10.2147/IJN.S128525. eCollection 2017.
8
Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics.
Adv Drug Deliv Rev. 2017 Apr;113:157-176. doi: 10.1016/j.addr.2016.08.001. Epub 2016 Aug 9.
9
Theranostic Magnetic Nanostructures (MNS) for Cancer.
Cancer Treat Res. 2015;166:51-83. doi: 10.1007/978-3-319-16555-4_3.
10
Towards non-invasive diagnostic imaging of early-stage Alzheimer's disease.
Nat Nanotechnol. 2015 Jan;10(1):91-8. doi: 10.1038/nnano.2014.254. Epub 2014 Dec 22.

本文引用的文献

1
Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation.
J Phys Chem C Nanomater Interfaces. 2009;113(41):17761-17767. doi: 10.1021/jp905776g.
2
A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging.
Contrast Media Mol Imaging. 2010 Jul-Aug;5(4):231-6. doi: 10.1002/cmmi.376.
4
Self-confirming "AND" logic nanoparticles for fault-free MRI.
J Am Chem Soc. 2010 Aug 18;132(32):11015-7. doi: 10.1021/ja104503g.
5
High-performance nanostructured MR contrast probes.
Nanoscale. 2010 Oct;2(10):1884-91. doi: 10.1039/c0nr00173b. Epub 2010 Aug 6.
6
Facile synthesis of lanthanide nanoparticles with paramagnetic, down- and up-conversion properties.
Nanoscale. 2010 Jul;2(7):1240-3. doi: 10.1039/c0nr00073f. Epub 2010 Apr 23.
7
Fluorescence Modified Chitosan-Coated Magnetic Nanoparticles for High-Efficient Cellular Imaging.
Nanoscale Res Lett. 2009 Jan 16;4(4):287-295. doi: 10.1007/s11671-008-9239-9.
8
Magnetic resonance imaging of brain angiogenesis after stroke.
Angiogenesis. 2010 Jun;13(2):101-11. doi: 10.1007/s10456-010-9174-0. Epub 2010 Jun 16.
9
Quantum dots for multimodal molecular imaging of angiogenesis.
Angiogenesis. 2010 Jun;13(2):131-4. doi: 10.1007/s10456-010-9177-x. Epub 2010 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验