Suppr超能文献

鉴定一种快速形成的非核小体组蛋白-DNA 中间产物,该中间产物可通过 ACF 转化为染色质。

Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF.

机构信息

Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0347, USA.

出版信息

Mol Cell. 2011 Aug 19;43(4):638-48. doi: 10.1016/j.molcel.2011.07.017.

Abstract

Chromatin assembly involves the combined action of histone chaperones and ATP-dependent motor proteins. Here, we investigate the mechanism of nucleosome assembly with a purified chromatin assembly system containing the histone chaperone NAP1 and the ATP-dependent motor protein ACF. These studies revealed the rapid formation of a stable nonnucleosomal histone-DNA intermediate that is converted into canonical nucleosomes by ACF. The histone-DNA intermediate does not supercoil DNA like a canonical nucleosome, but has a nucleosome-like appearance by atomic force microscopy. This intermediate contains all four core histones, lacks NAP1, and is formed by the initial deposition of histones H3-H4. Conversion of the intermediate into histone H1-containing chromatin results in increased resistance to micrococcal nuclease digestion. These findings suggest that the histone-DNA intermediate corresponds to nascent nucleosome-like structures, such as those observed at DNA replication forks. Related complexes might be formed during other chromatin-directed processes such as transcription, DNA repair, and histone exchange.

摘要

染色质组装涉及组蛋白伴侣和 ATP 依赖性马达蛋白的共同作用。在这里,我们使用包含组蛋白伴侣 NAP1 和 ATP 依赖性马达蛋白 ACF 的纯化染色质组装系统研究核小体组装的机制。这些研究揭示了快速形成稳定的非核小体组蛋白-DNA 中间物,该中间物通过 ACF 转化为典型核小体。与典型核小体不同,组蛋白-DNA 中间物不会使 DNA 超螺旋,但通过原子力显微镜具有核小体样外观。这种中间物包含所有四个核心组蛋白,缺乏 NAP1,并且由组蛋白 H3-H4 的初始沉积形成。中间物转化为含有组蛋白 H1 的染色质会导致对微球菌核酸酶消化的抵抗力增加。这些发现表明,组蛋白-DNA 中间物对应于新生核小体样结构,例如在 DNA 复制叉处观察到的结构。在其他染色质定向过程(如转录、DNA 修复和组蛋白交换)中可能形成相关复合物。

相似文献

2
The prenucleosome, a stable conformational isomer of the nucleosome.
Genes Dev. 2015 Dec 15;29(24):2563-75. doi: 10.1101/gad.272633.115.
3
The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation.
Mol Cell. 2011 Feb 18;41(4):398-408. doi: 10.1016/j.molcel.2011.01.025.
4
Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1.
Nat Struct Mol Biol. 2013 Jan;20(1):29-35. doi: 10.1038/nsmb.2446. Epub 2012 Nov 25.
5
All roads lead to chromatin: multiple pathways for histone deposition.
Biochim Biophys Acta. 2013 Mar-Apr;1819(3-4):238-46.
6
Distinct roles for histone chaperones in the deposition of Htz1 in chromatin.
Biosci Rep. 2014 Sep 19;34(5):e00139. doi: 10.1042/BSR20140092.
7
Prenucleosomes and Active Chromatin.
Cold Spring Harb Symp Quant Biol. 2015;80:65-72. doi: 10.1101/sqb.2015.80.027300. Epub 2016 Jan 14.
8
Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly.
Nat Struct Mol Biol. 2005 Feb;12(2):160-6. doi: 10.1038/nsmb884. Epub 2005 Jan 9.
9
Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure.
Nucleic Acids Res. 2014 Apr;42(8):4922-33. doi: 10.1093/nar/gku150. Epub 2014 Feb 21.
10
Fly Fishing for Histones: Catch and Release by Histone Chaperone Intrinsically Disordered Regions and Acidic Stretches.
J Mol Biol. 2017 Aug 4;429(16):2401-2426. doi: 10.1016/j.jmb.2017.06.005. Epub 2017 Jun 10.

引用本文的文献

1
H3K56 acetylation regulates chromatin maturation following DNA replication.
Nat Commun. 2025 Jan 2;16(1):134. doi: 10.1038/s41467-024-55144-7.
2
Resolution of transcription-induced hexasome-nucleosome complexes by Chd1 and FACT.
Mol Cell. 2024 Sep 19;84(18):3423-3437.e8. doi: 10.1016/j.molcel.2024.08.022. Epub 2024 Sep 12.
3
Epigenetic Causes of Overgrowth Syndromes.
J Clin Endocrinol Metab. 2024 Jan 18;109(2):312-320. doi: 10.1210/clinem/dgad420.
4
Proximal-end bias from in-vitro reconstituted nucleosomes and the result on downstream data analysis.
PLoS One. 2021 Oct 21;16(10):e0258737. doi: 10.1371/journal.pone.0258737. eCollection 2021.
6
Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin.
Int J Mol Sci. 2021 Jun 28;22(13):6922. doi: 10.3390/ijms22136922.
7
Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer.
Int J Mol Sci. 2021 May 25;22(11):5578. doi: 10.3390/ijms22115578.
8
De novo reconstitution of chromatin using wheat germ cell-free protein synthesis.
FEBS Open Bio. 2021 Jun;11(6):1552-1564. doi: 10.1002/2211-5463.13178. Epub 2021 May 16.
9
Chromatin Modifiers in Transcriptional Regulation: New Findings and Prospects.
Acta Naturae. 2021 Jan-Mar;13(1):16-30. doi: 10.32607/actanaturae.11101.
10
ATRX limits the accessibility of histone H3-occupied HSV genomes during lytic infection.
PLoS Pathog. 2021 Apr 28;17(4):e1009567. doi: 10.1371/journal.ppat.1009567. eCollection 2021 Apr.

本文引用的文献

1
Histone chaperones: modulators of chromatin marks.
Mol Cell. 2011 Mar 4;41(5):502-14. doi: 10.1016/j.molcel.2011.02.013.
2
New chaps in the histone chaperone arena.
Genes Dev. 2010 Jul 1;24(13):1334-8. doi: 10.1101/gad.1946810.
3
The histone shuffle: histone chaperones in an energetic dance.
Trends Biochem Sci. 2010 Sep;35(9):476-89. doi: 10.1016/j.tibs.2010.04.001. Epub 2010 May 3.
5
Chaperoning histones during DNA replication and repair.
Cell. 2010 Jan 22;140(2):183-95. doi: 10.1016/j.cell.2010.01.004.
6
Histone H1 and its isoforms: contribution to chromatin structure and function.
Gene. 2009 Feb 15;431(1-2):1-12. doi: 10.1016/j.gene.2008.11.003. Epub 2008 Nov 14.
7
Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information.
Trends Cell Biol. 2009 Jan;19(1):29-41. doi: 10.1016/j.tcb.2008.10.002. Epub 2008 Nov 20.
9
On the mechanism of nucleosome assembly by histone chaperone NAP1.
J Biol Chem. 2006 Jun 16;281(24):16462-72. doi: 10.1074/jbc.M511619200. Epub 2006 Mar 12.
10
Strategies for the reconstitution of chromatin.
Nat Methods. 2004 Oct;1(1):19-26. doi: 10.1038/nmeth709.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验