Suppr超能文献

平行行进波 MRI:一项可行性研究。

Parallel traveling-wave MRI: a feasibility study.

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.

出版信息

Magn Reson Med. 2012 Apr;67(4):965-78. doi: 10.1002/mrm.23073. Epub 2011 Aug 19.

Abstract

Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments.

摘要

行波磁共振成像利用单个贴片天线在磁体孔中的远场产生射频场,用于对大型样本(如人体)进行成像。在这项工作中,使用微带贴片天线阵列通过数值分析和实验测试研究了将“行波”技术应用于并行成像的可行性。建立了一个特定的贴片阵列模型,每个阵列元件都是微带贴片天线。台架测试表明,两个相邻元件之间的解耦优于-26dB,而每个元件的匹配达到-36dB,显示出出色的隔离性能和阻抗匹配能力。模拟了灵敏度模式并计算了空载和加载情况下的 g 因子。空载和加载情况下的 B1 灵敏度模式和 g 因子的结果证明了行波并行成像的可行性。模拟还表明,不同的阵列配置,如贴片形状、位置和方向,会导致不同的灵敏度模式和 g 因子图,这为操纵 B(1)场和提高并行成像性能提供了一种方法。该方法还通过使用 7T MR 成像实验进行了验证。

相似文献

1
Parallel traveling-wave MRI: a feasibility study.
Magn Reson Med. 2012 Apr;67(4):965-78. doi: 10.1002/mrm.23073. Epub 2011 Aug 19.
2
7T transmit/receive arrays using ICE decoupling for human head MR imaging.
IEEE Trans Med Imaging. 2014 Sep;33(9):1781-7. doi: 10.1109/TMI.2014.2313879. Epub 2014 Apr 1.
3
Design and Test of Magnetic Wall Decoupling for Dipole Transmit/Receive Array for MR Imaging at the Ultrahigh Field of 7T.
Appl Magn Reson. 2015 Jan;46(1):59-66. doi: 10.1007/s00723-014-0612-9. Epub 2014 Nov 27.
4
Closely-spaced double-row microstrip RF arrays for parallel MR imaging at ultrahigh fields.
Appl Magn Reson. 2015 Nov;46(11):1239-1248. doi: 10.1007/s00723-015-0712-1. Epub 2015 Jun 30.
5
Improved traveling-wave efficiency in 7T human MRI using passive local loop and dipole arrays.
Magn Reson Imaging. 2017 Jun;39:103-109. doi: 10.1016/j.mri.2017.02.003. Epub 2017 Feb 9.
6
Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging.
Quant Imaging Med Surg. 2014 Feb;4(1):11-8. doi: 10.3978/j.issn.2223-4292.2014.02.03.
7
Monopole antenna array design for 3 T and 7 T magnetic resonance imaging.
PLoS One. 2019 Apr 1;14(4):e0214637. doi: 10.1371/journal.pone.0214637. eCollection 2019.
9
Magnetic wall decoupling method for monopole coil array in ultrahigh field MRI: a feasibility test.
Quant Imaging Med Surg. 2014 Apr;4(2):79-86. doi: 10.3978/j.issn.2223-4292.2014.04.10.
10
ICE decoupling technique for RF coil array designs.
Med Phys. 2011 Jul;38(7):4086-93. doi: 10.1118/1.3598112.

引用本文的文献

2
Multimodal surface coils for small animal MR imaging at ultrahigh fields.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2024 May;32.
3
Multimodal surface coils for low-field MR imaging.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2024 May;32.
4
Dual-Tuned Coaxial-Transmission-Line RF Coils for Hyperpolarized C and Deuterium H Metabolic MRS Imaging at Ultrahigh Fields.
IEEE Trans Biomed Eng. 2024 May;71(5):1521-1530. doi: 10.1109/TBME.2023.3341760. Epub 2024 Apr 22.
5
7
Compressed sensing MRI: a review from signal processing perspective.
BMC Biomed Eng. 2019 Mar 29;1:8. doi: 10.1186/s42490-019-0006-z. eCollection 2019.
8
Design and Test of Magnetic Wall Decoupling for Dipole Transmit/Receive Array for MR Imaging at the Ultrahigh Field of 7T.
Appl Magn Reson. 2015 Jan;46(1):59-66. doi: 10.1007/s00723-014-0612-9. Epub 2014 Nov 27.
10
Sensitivity enhancement of traveling wave MRI using free local resonators: an experimental demonstration.
Quant Imaging Med Surg. 2017 Apr;7(2):170-176. doi: 10.21037/qims.2017.02.10.

本文引用的文献

3
Shielded microstrip array for 7T human MR imaging.
IEEE Trans Med Imaging. 2010 Jan;29(1):179-84. doi: 10.1109/TMI.2009.2033597. Epub 2009 Oct 9.
4
7T human spine imaging arrays with adjustable inductive decoupling.
IEEE Trans Biomed Eng. 2010 Feb;57(2):397-403. doi: 10.1109/TBME.2009.2030170. Epub 2009 Aug 25.
5
Travelling-wave nuclear magnetic resonance.
Nature. 2009 Feb 19;457(7232):994-8. doi: 10.1038/nature07752.
6
Retinotopic mapping of the human visual cortex at a magnetic field strength of 7T.
Clin Neurophysiol. 2009 Jan;120(1):108-16. doi: 10.1016/j.clinph.2008.10.153. Epub 2008 Dec 13.
7
High resolution single-shot EPI at 7T.
MAGMA. 2008 Mar;21(1-2):73-86. doi: 10.1007/s10334-007-0087-x. Epub 2007 Nov 1.
8
Imaging artifacts at 3.0T.
J Magn Reson Imaging. 2006 Oct;24(4):735-46. doi: 10.1002/jmri.20698.
9
Higher-order harmonic transmission-line RF coil design for MR applications.
Magn Reson Med. 2005 May;53(5):1234-9. doi: 10.1002/mrm.20462.
10
An inverted-microstrip resonator for human head proton MR imaging at 7 tesla.
IEEE Trans Biomed Eng. 2005 Mar;52(3):495-504. doi: 10.1109/TBME.2004.842968.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验