Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
Biochemistry. 2011 Sep 20;50(37):7953-63. doi: 10.1021/bi201042r. Epub 2011 Aug 25.
Biotin synthase catalyzes the conversion of dethiobiotin (DTB) to biotin through the oxidative addition of sulfur between two saturated carbon atoms, generating a thiophane ring fused to the existing ureido ring. Biotin synthase is a member of the radical SAM superfamily, composed of enzymes that reductively cleave S-adenosyl-l-methionine (SAM or AdoMet) to generate a 5'-deoxyadenosyl radical that can abstract unactivated hydrogen atoms from a variety of organic substrates. In biotin synthase, abstraction of a hydrogen atom from the C9 methyl group of DTB would result in formation of a dethiobiotinyl methylene carbon radical, which is then quenched by a sulfur atom to form a new carbon-sulfur bond in the intermediate 9-mercaptodethiobiotin (MDTB). We have proposed that this sulfur atom is the μ-sulfide of a 2Fe-2S cluster found near DTB in the enzyme active site. In the present work, we show that formation of MDTB is accompanied by stoichiometric generation of a paramagnetic FeS cluster. The electron paramagnetic resonance (EPR) spectrum is modeled as a 2:1 mixture of components attributable to different forms of a 2Fe-2S cluster, possibly distinguished by slightly different coordination environments. Mutation of Arg260, one of the ligands to the [2Fe-2S] cluster, causes a distinctive change in the EPR spectrum. Furthermore, magnetic coupling of the unpaired electron with (14)N from Arg260, detectable by electron spin envelope modulation (ESEEM) spectroscopy, is observed in WT enzyme but not in the Arg260Met mutant enzyme. Both results indicate that the paramagnetic FeS cluster formed during catalytic turnover is a 2Fe-2S cluster, consistent with a mechanism in which the 2Fe-2S cluster simultaneously provides and oxidizes sulfide during carbon-sulfur bond formation.
生物素合酶通过两个饱和碳原子之间的硫的氧化加成催化将脱硫生物素 (DTB) 转化为生物素,生成与现有脲基环融合的噻吩环。生物素合酶是自由基 SAM 超家族的成员,由还原切割 S-腺苷-L-蛋氨酸 (SAM 或 AdoMet) 以生成 5'-脱氧腺苷自由基的酶组成,该自由基可以从各种有机底物中提取未激活的氢原子。在生物素合酶中,从 DTB 的 C9 甲基中提取氢原子会导致形成脱硫生物素亚甲基碳自由基,然后该自由基被硫原子猝灭,在中间体 9-巯基脱硫生物素 (MDTB) 中形成新的碳-硫键。我们已经提出,这个硫原子是在酶活性位点中靠近 DTB 的 2Fe-2S 簇的 μ-硫。在本工作中,我们表明 MDTB 的形成伴随着化学计量生成一个顺磁 FeS 簇。电子顺磁共振 (EPR) 谱被模拟为归因于不同形式的 2Fe-2S 簇的混合物,其可能通过略微不同的配位环境来区分。[2Fe-2S]簇的配体之一 Arg260 的突变导致 EPR 谱发生独特的变化。此外,通过电子自旋包络调制 (ESEEM) 光谱检测到未配对电子与 Arg260 的 (14)N 的磁偶联在 WT 酶中可见,但在 Arg260Met 突变酶中不可见。这两个结果都表明,催化周转过程中形成的顺磁 FeS 簇是一个 2Fe-2S 簇,与一个机制一致,其中 2Fe-2S 簇在形成碳-硫键期间同时提供和氧化硫。