Suppr超能文献

利用全场透射 X 射线显微镜对纳米尺度的化学相转变进行三维成像。

Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy.

机构信息

Fondazione Bruno Kessler, Povo, Italy.

出版信息

J Synchrotron Radiat. 2011 Sep;18(Pt 5):773-81. doi: 10.1107/S0909049511019364. Epub 2011 Jul 8.

Abstract

The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano- and micrometer-scale factors at the origin of macroscopic behavior. While different electron- and X-ray-based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X-ray imaging set-up is proposed, combining full-field transmission X-ray microscopy (TXM) with X-ray absorption near-edge structure (XANES) spectroscopy to follow two-dimensional and three-dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (>20 µm) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields.

摘要

在多尺度下探测复杂体系的形貌和相分布,揭示了宏观行为起源处纳米和微米尺度因素的相互作用。虽然不同的基于电子和 X 射线的成像技术可以与高分辨率光谱相结合,但由于实验时间的限制,得到的视场太小,无法代表复合材料样品。在这里,提出了一种新的 X 射线成像装置,将全视野透射 X 射线显微镜(TXM)与 X 射线吸收近边结构(XANES)光谱相结合,以高分辨率(数十纳米)跟踪大体积的二维和三维形貌和化学变化。TXM XANES 成像在具有最小制备要求的厚样品(>20 μm)中提供纳米尺度的化学物质形态。此外,其高通量允许在几分钟到几个小时内分析大区域(可达毫米)。使用电池电极提供了概念验证,尽管其多功能性将在许多不同的研究领域产生影响。

相似文献

1
Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy.
J Synchrotron Radiat. 2011 Sep;18(Pt 5):773-81. doi: 10.1107/S0909049511019364. Epub 2011 Jul 8.
2
Transmission X-ray microscopy-based three-dimensional XANES imaging.
Analyst. 2024 Aug 19;149(17):4506-4513. doi: 10.1039/d4an00705k.
3
Exploring spectroscopic X-ray nano-imaging with Zernike phase contrast enhancement.
Sci Rep. 2022 Feb 21;12(1):2894. doi: 10.1038/s41598-022-06827-y.
4
TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy.
J Synchrotron Radiat. 2012 Mar;19(Pt 2):281-7. doi: 10.1107/S0909049511049144. Epub 2012 Jan 5.
6
Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging.
J Struct Biol. 2012 Feb;177(2):212-23. doi: 10.1016/j.jsb.2011.12.023. Epub 2012 Jan 18.
7
Transmission x-ray microscopy and its applications in battery material research-a short review.
Nanotechnology. 2021 Aug 13;32(44). doi: 10.1088/1361-6528/ac17ff.
9
TXM-Sandbox: an open-source software for transmission X-ray microscopy data analysis.
J Synchrotron Radiat. 2022 Jan 1;29(Pt 1):266-275. doi: 10.1107/S1600577521011978.
10
Mesoscale phase distribution in single particles of LiFePO following lithium deintercalation.
Chem Mater. 2013 May 14;25(9):1664-1672. doi: 10.1021/cm400106k.

引用本文的文献

1
pH variations enable guanine crystal formation within iridosomes.
Nat Chem Biol. 2025 Sep 2. doi: 10.1038/s41589-025-02020-0.
2
TXM-Pal: a companion software for advanced data processing in spectroscopic X-ray microscopy.
J Synchrotron Radiat. 2025 May 1;32(Pt 3):815-822. doi: 10.1107/S1600577525002036. Epub 2025 Apr 2.
3
Visualization of four-dimensional X-ray absorption fine structure data using a virtual reality system.
J Synchrotron Radiat. 2025 Jan 1;32(Pt 1):162-170. doi: 10.1107/S1600577524011226.
5
Nanoscale chemical imaging with structured X-ray illumination.
Proc Natl Acad Sci U S A. 2023 Dec 5;120(49):e2314542120. doi: 10.1073/pnas.2314542120. Epub 2023 Nov 28.
6
X-ray Tomography Applied to Electrochemical Devices and Electrocatalysis.
Chem Rev. 2023 Aug 23;123(16):9880-9914. doi: 10.1021/acs.chemrev.2c00873. Epub 2023 Aug 14.
7
Accurate real space iterative reconstruction (RESIRE) algorithm for tomography.
Sci Rep. 2023 Apr 6;13(1):5624. doi: 10.1038/s41598-023-31124-7.
8
Monochromatic computed tomography using laboratory-scale setup.
Sci Rep. 2023 Jan 7;13(1):363. doi: 10.1038/s41598-023-27409-6.
9
Tracking dynamic structural changes in catalysis by rapid 2D-XANES microscopy.
J Synchrotron Radiat. 2021 Sep 1;28(Pt 5):1518-1527. doi: 10.1107/S1600577521007074. Epub 2021 Aug 12.

本文引用的文献

1
Phase retrieval using polychromatic illumination for transmission X-ray microscopy.
Opt Express. 2011 Jan 17;19(2):540-5. doi: 10.1364/OE.19.000540.
2
Three-dimensional cellular ultrastructure resolved by X-ray microscopy.
Nat Methods. 2010 Dec;7(12):985-7. doi: 10.1038/nmeth.1533. Epub 2010 Nov 14.
3
Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies.
Chem Soc Rev. 2010 Dec;39(12):4754-66. doi: 10.1039/c0cs00054j. Epub 2010 Oct 28.
4
Chemical imaging of catalytic solids with synchrotron radiation.
Chem Soc Rev. 2010 Dec;39(12):4656-72. doi: 10.1039/c0cs00089b. Epub 2010 Oct 27.
5
Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales.
Chem Soc Rev. 2010 Dec;39(12):4741-53. doi: 10.1039/c0cs00036a. Epub 2010 Oct 26.
7
Nanoscale X-ray microscopic imaging of mammalian mineralized tissue.
Microsc Microanal. 2010 Jun;16(3):327-36. doi: 10.1017/S1431927610000231. Epub 2010 Apr 7.
8
In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials.
Chemphyschem. 2010 Apr 6;11(5):951-62. doi: 10.1002/cphc.200901023.
9
Soft X-ray spectro-tomography study of cyanobacterial biomineral nucleation.
Geobiology. 2009 Dec;7(5):577-91. doi: 10.1111/j.1472-4669.2009.00221.x. Epub 2009 Oct 26.
10
Atomic-resolution imaging with a sub-50-pm electron probe.
Phys Rev Lett. 2009 Mar 6;102(9):096101. doi: 10.1103/PhysRevLett.102.096101. Epub 2009 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验