Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI 02906, USA.
Hum Genet. 2012 Mar;131(3):373-91. doi: 10.1007/s00439-011-1082-x. Epub 2011 Aug 25.
Schizophrenia is a complex genetic disorder. Gene set-based analytic (GSA) methods have been widely applied for exploratory analyses of large, high-throughput datasets, but less commonly employed for biological hypothesis testing. Our primary hypothesis is that variation in ion channel genes contribute to the genetic susceptibility to schizophrenia. We applied Exploratory Visual Analysis (EVA), one GSA application, to analyze European-American (EA) and African-American (AA) schizophrenia genome-wide association study datasets for statistical enrichment of ion channel gene sets, comparing GSA results derived under three SNP-to-gene mapping strategies: (1) GENIC; (2) 500-Kb; (3) 2.5-Mb and three complimentary SNP-to-gene statistical reduction methods: (1) minimum p value (pMIN); (2) a novel method, proportion of SNPs per Gene with p values below a pre-defined α-threshold (PROP); and (3) the truncated product method (TPM). In the EA analyses, ion channel gene set(s) were enriched under all mapping and statistical approaches. In the AA analysis, ion channel gene set(s) were significantly enriched under pMIN for all mapping strategies and under PROP for broader mapping strategies. Less extensive enrichment in the AA sample may reflect true ethnic differences in susceptibility, sampling or case ascertainment differences, or higher dimensionality relative to sample size of the AA data. More consistent findings under broader mapping strategies may reflect enhanced power due to increased SNP inclusion, enhanced capture of effects over extended haplotypes or significant contributions from regulatory regions. While extensive pMIN findings may reflect gene size bias, the extent and significance of PROP and TPM findings suggest that common variation at ion channel genes may capture some of the heritability of schizophrenia.
精神分裂症是一种复杂的遗传疾病。基于基因集的分析(GSA)方法已广泛应用于大型高通量数据集的探索性分析,但较少用于生物学假设检验。我们的主要假设是,离子通道基因的变异导致精神分裂症的遗传易感性。我们应用了一种 GSA 应用程序——探索性可视化分析(EVA),来分析欧洲裔美国人(EA)和非裔美国人(AA)的精神分裂症全基因组关联研究数据集,以统计富集离子通道基因集,比较三种 SNP 到基因映射策略下得出的 GSA 结果:(1)GENIC;(2)500-Kb;(3)2.5-Mb 和三种互补的 SNP 到基因统计缩减方法:(1)最小 p 值(pMIN);(2)一种新方法,具有低于预定义α阈值的 p 值的 SNP 数除以基因数(PROP);(3)截断乘积法(TPM)。在 EA 分析中,离子通道基因集在所有映射和统计方法下都有富集。在 AA 分析中,离子通道基因集在所有映射策略下的 pMIN 和更广泛的映射策略下的 PROP 都显著富集。AA 样本中富集程度较低可能反映了易感性、采样或病例确定差异的真实种族差异,或相对于 AA 数据的样本量,其维度更高。更广泛的映射策略下更一致的发现可能反映了由于 SNP 纳入增加而增强的功效,对扩展单倍型的影响的增强捕获或调控区域的显著贡献。尽管广泛的 pMIN 发现可能反映了基因大小偏差,但 PROP 和 TPM 发现的程度和显著性表明,离子通道基因的常见变异可能捕捉到精神分裂症部分遗传率。