Suppr超能文献

无分辨率限制的社区检测范围狭窄。

Narrow scope for resolution-limit-free community detection.

作者信息

Traag V A, Van Dooren P, Nesterov Y

机构信息

ICTEAM, Université Catholique de Louvain, Louvain-la Neuve, Belgium.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 2):016114. doi: 10.1103/PhysRevE.84.016114. Epub 2011 Jul 29.

Abstract

Detecting communities in large networks has drawn much attention over the years. While modularity remains one of the more popular methods of community detection, the so-called resolution limit remains a significant drawback. To overcome this issue, it was recently suggested that instead of comparing the network to a random null model, as is done in modularity, it should be compared to a constant factor. However, it is unclear what is meant exactly by "resolution-limit-free," that is, not suffering from the resolution limit. Furthermore, the question remains what other methods could be classified as resolution-limit-free. In this paper we suggest a rigorous definition and derive some basic properties of resolution-limit-free methods. More importantly, we are able to prove exactly which class of community detection methods are resolution-limit-free. Furthermore, we analyze which methods are not resolution-limit-free, suggesting there is only a limited scope for resolution-limit-free community detection methods. Finally, we provide such a natural formulation, and show it performs superbly.

摘要

多年来,在大型网络中检测社区一直备受关注。虽然模块度仍然是社区检测中较受欢迎的方法之一,但所谓的分辨率极限仍然是一个重大缺陷。为了克服这个问题,最近有人提出,与模块度中那样将网络与随机空模型进行比较不同,应该将其与一个常数因子进行比较。然而,“无分辨率极限”的确切含义并不明确,也就是说,不受分辨率极限的影响。此外,问题仍然存在,即哪些其他方法可以被归类为无分辨率极限。在本文中,我们提出了一个严格的定义,并推导了无分辨率极限方法的一些基本性质。更重要的是,我们能够确切地证明哪一类社区检测方法是无分辨率极限的。此外,我们分析了哪些方法不是无分辨率极限的,这表明无分辨率极限的社区检测方法的范围有限。最后,我们提供了这样一种自然的表述,并表明它表现出色。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验