Suppr超能文献

超越大陆群体的人类遗传变异的多尺度复杂性。

The multi-scale complexity of human genetic variation beyond continental groups.

作者信息

Palma-Martínez María J, Posadas-García Yuridia S, López-Ángeles Brenda E, Quiroz-López Claudia, Lewis Anna C F, Bird Kevin A, Lasisi Tina, Zaidi Arslan A, Sohail Mashaal

机构信息

Centro de Ciencias Genómicas, UNAM, Cuernavaca, México.

Escuela Nacional de Antropología e Historia, Ciudad de México, México.

出版信息

bioRxiv. 2024 Dec 16:2024.12.11.627824. doi: 10.1101/2024.12.11.627824.

Abstract

Traditional clustering and visualization approaches in human genetics often operate under frameworks that assume inherent, discrete groupings. These methods can inadvertently simplify multifaceted relationships, functioning to entrench the idea of typological groups. We introduce a network-based pipeline and visualization tool grounded in relational thinking, which constructs networks from a variety of genetic similarity metrics. We identify communities at multiple resolutions, departing from typological models of analysis and interpretation that categorize individuals into a (predefined) number of sets. We applied our pipeline to a dataset merged from the 1000 Genomes and Human Genome Diversity Project, revealing the limitations of traditional groupings and capturing the complexities introduced by demographic events and evolutionary processes. This method embraces the context-specificity of genetic similarities that are salient depending on the question, markers of interest, and study individuals. Different numbers of communities are revealed depending on the resolution chosen and metric used, underscoring a fluid spectrum of genetic relationships and challenging the notion of universal categorization. We provide a web application (https://sohail-lab.shinyapps.io/GG-NC/) for interactive visualization and engagement with these intricate genetic landscapes.

摘要

人类遗传学中的传统聚类和可视化方法通常在假定存在固有离散分组的框架下运行。这些方法可能会不经意地简化多方面的关系,从而强化类型学群体的概念。我们引入了一种基于关系思维的基于网络的流程和可视化工具,该工具根据各种遗传相似性指标构建网络。我们在多个分辨率下识别群落,摒弃了将个体分类为(预定义)数量集合的类型学分析和解释模型。我们将我们的流程应用于一个合并了千人基因组计划和人类基因组多样性计划的数据集,揭示了传统分组的局限性,并捕捉到了人口事件和进化过程所引入的复杂性。这种方法包含了遗传相似性的上下文特异性,而这种特异性取决于问题、感兴趣的标记和研究个体。根据所选的分辨率和使用的指标,会揭示出不同数量的群落,这凸显了遗传关系的动态范围,并挑战了普遍分类的概念。我们提供了一个网络应用程序(https://sohail-lab.shinyapps.io/GG-NC/),用于交互式可视化和探索这些复杂的遗传图谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aef/11702577/a3b985ea8f31/nihpp-2024.12.11.627824v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验