Suppr超能文献

脊髓损伤后功能恢复的脊髓内微刺激。

Intraspinal microstimulation for the recovery of function following spinal cord injury.

机构信息

Department of Cell Biology and the Centre for Neuroscience, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.

出版信息

Prog Brain Res. 2011;194:227-39. doi: 10.1016/B978-0-444-53815-4.00004-2.

Abstract

Spinal cord injury is a devastating neurological trauma, often resulting in the impairment of bladder, bowel, and sexual function as well as the loss of voluntary control of muscles innervated by spinal cord segments below the lesion site. Research is ongoing into several classes of therapies to restore lost function. These include the encouragement of neural sparing and regeneration of the affected tissue, and the intervention with pharmacological and rehabilitative means to improve function. This review will focus on the application of electrical current in the spinal cord in order to reactivate extant circuitry which coordinates and controls smooth and skeletal muscle below the injury. We first present a brief historical review of intraspinal microstimulation (ISMS) focusing on its use for restoring bladder function after spinal cord injury as well as its utilization as a research tool for mapping spinal cord circuits that coordinate movements. We then present a review of our own results related to the use of ISMS for restoring standing and walking movements after spinal cord injury. We discuss the mechanisms of action of ISMS and how they relate to observed functional outcomes in animal models. These include the activation of fibers-in-passage which lead to the transsynaptic spread of activation through the spinal cord and the ability of ISMS to produce fatigue-resistant, weight-bearing movements. We present our thoughts on the clinical potential for ISMS with regard to implantation techniques, stability, and damage induced by mechanical and electrical factors. We conclude by suggesting improvements in materials and techniques that are needed in preparation for a clinical proof-of-principle and review our current attempts to achieve these.

摘要

脊髓损伤是一种严重的神经创伤,常导致损伤部位以下脊髓节段支配的膀胱、肠道和性功能障碍以及肌肉的自主控制丧失。目前正在研究几类治疗方法来恢复失去的功能。这些方法包括鼓励神经保留和受影响组织的再生,以及通过药理学和康复手段干预来改善功能。这篇综述将重点介绍电流在脊髓中的应用,以重新激活协调和控制损伤以下的平滑肌和骨骼肌的现存回路。我们首先简要回顾了脊髓内微刺激(ISMS)的应用,重点介绍了其在恢复脊髓损伤后膀胱功能方面的应用,以及作为研究工具用于映射协调运动的脊髓回路。然后,我们回顾了我们自己在使用 ISMS 恢复脊髓损伤后站立和行走运动方面的研究结果。我们讨论了 ISMS 的作用机制及其与动物模型中观察到的功能结果的关系。这些机制包括激活通路上的纤维,导致激活通过脊髓的突触传递,以及 ISMS 产生抗疲劳、承重运动的能力。我们提出了我们对 ISMS 临床潜力的看法,包括植入技术、稳定性以及机械和电因素引起的损伤。最后,我们通过建议改进材料和技术来为临床原理验证做准备,并回顾了我们目前为实现这一目标所做的努力。

相似文献

1
Intraspinal microstimulation for the recovery of function following spinal cord injury.
Prog Brain Res. 2011;194:227-39. doi: 10.1016/B978-0-444-53815-4.00004-2.
2
Wireless control of intraspinal microstimulation in a rodent model of paralysis.
J Neurosurg. 2015 Jul;123(1):232-242. doi: 10.3171/2014.10.JNS132370. Epub 2014 Dec 5.
3
An implantable neural stimulator for intraspinal microstimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:900-3. doi: 10.1109/EMBC.2012.6346077.
4
Enhanced spinal cord microstimulation using conducting polymer-coated carbon microfibers.
Acta Biomater. 2019 May;90:71-86. doi: 10.1016/j.actbio.2019.03.037. Epub 2019 Mar 21.
5
Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury.
J Neurophysiol. 2017 Feb 1;117(2):767-776. doi: 10.1152/jn.00721.2016. Epub 2016 Nov 23.
6
Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation.
IEEE Trans Neural Syst Rehabil Eng. 2007 Jun;15(2):273-85. doi: 10.1109/TNSRE.2007.897030.
7
Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury.
J Neural Eng. 2013 Jun;10(3):036001. doi: 10.1088/1741-2560/10/3/036001. Epub 2013 Apr 3.
8
Therapeutic intraspinal microstimulation improves forelimb function after cervical contusion injury.
J Neural Eng. 2013 Aug;10(4):044001. doi: 10.1088/1741-2560/10/4/044001. Epub 2013 May 28.
9
Mechanically Stable Intraspinal Microstimulation Implants for Human Translation.
Ann Biomed Eng. 2017 Mar;45(3):681-694. doi: 10.1007/s10439-016-1709-0. Epub 2016 Aug 25.
10
Intraspinal microstimulation generates functional movements after spinal-cord injury.
IEEE Trans Neural Syst Rehabil Eng. 2004 Dec;12(4):430-40. doi: 10.1109/TNSRE.2004.837754.

引用本文的文献

1
biocompatibility evaluation of functional electrically stimulating microelectrodes on primary glia.
Front Bioeng Biotechnol. 2024 Jan 19;12:1351087. doi: 10.3389/fbioe.2024.1351087. eCollection 2024.
2
Generation of locomotor‑like activity using monopolar intraspinal electrical microstimulation in rats.
Exp Ther Med. 2023 Oct 18;26(6):560. doi: 10.3892/etm.2023.12259. eCollection 2023 Dec.
3
Spinal stimulation for motor rehabilitation immediately modulates nociceptive transmission.
J Neural Eng. 2022 Oct 31;19(5). doi: 10.1088/1741-2552/ac9a00.
4
The effects of electrical stimulation on glial cell behaviour.
BMC Biomed Eng. 2022 Sep 3;4(1):7. doi: 10.1186/s42490-022-00064-0.
5
Comparative neuroanatomy of the lumbosacral spinal cord of the rat, cat, pig, monkey, and human.
Sci Rep. 2021 Jan 21;11(1):1955. doi: 10.1038/s41598-021-81371-9.
8
Functional organization of motor networks in the lumbosacral spinal cord of non-human primates.
Sci Rep. 2019 Sep 19;9(1):13539. doi: 10.1038/s41598-019-49328-1.
9
Differences in neuroplasticity after spinal cord injury in varying animal models and humans.
Neural Regen Res. 2019 Jan;14(1):7-19. doi: 10.4103/1673-5374.243694.
10
[Measuring functional core regions of hindlimb movement control in the rat spinal cord with intraspinal microstimulation].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017 Aug 25;34(4):622-626. doi: 10.7507/1001-5515.201607029.

本文引用的文献

1
Muscle plasticity in rat following spinal transection and chronic intraspinal microstimulation.
IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):79-83. doi: 10.1109/TNSRE.2010.2052832. Epub 2010 Sep 2.
2
The effects of intraspinal microstimulation on spinal cord tissue in the rat.
Biomaterials. 2010 Jul;31(21):5552-63. doi: 10.1016/j.biomaterials.2010.03.051. Epub 2010 Apr 28.
3
Hindlimb endpoint forces predict movement direction evoked by intraspinal microstimulation in cats.
IEEE Trans Neural Syst Rehabil Eng. 2009 Aug;17(4):379-89. doi: 10.1109/TNSRE.2009.2023295. Epub 2009 Jun 2.
4
Implanted neural interfaces: biochallenges and engineered solutions.
Annu Rev Biomed Eng. 2009;11:1-24. doi: 10.1146/annurev-bioeng-061008-124927.
5
Dose dependence of the 5-HT agonist quipazine in facilitating spinal stepping in the rat with epidural stimulation.
Neurosci Lett. 2008 Jun 27;438(3):281-5. doi: 10.1016/j.neulet.2008.04.080. Epub 2008 Apr 26.
6
Intraspinal stimulation for bladder voiding in cats before and after chronic spinal cord injury.
J Neural Eng. 2007 Dec;4(4):356-68. doi: 10.1088/1741-2560/4/4/002. Epub 2007 Oct 2.
7
Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions.
Spinal Cord. 2008 Apr;46(4):255-74. doi: 10.1038/sj.sc.3102091. Epub 2007 Sep 11.
8
Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation.
IEEE Trans Neural Syst Rehabil Eng. 2007 Jun;15(2):273-85. doi: 10.1109/TNSRE.2007.897030.
10
Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats.
J Neurophysiol. 2007 Mar;97(3):1986-2000. doi: 10.1152/jn.00818.2006. Epub 2007 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验