Suppr超能文献

实现基于人群队列发现的去标识联邦数据网络。

Implementation of a deidentified federated data network for population-based cohort discovery.

机构信息

Department of Biomedical Health Informatics, University of Washington, Seattle, Washington 98109, USA.

出版信息

J Am Med Inform Assoc. 2012 Jun;19(e1):e60-7. doi: 10.1136/amiajnl-2011-000133. Epub 2011 Aug 26.

Abstract

OBJECTIVE

The Cross-Institutional Clinical Translational Research project explored a federated query tool and looked at how this tool can facilitate clinical trial cohort discovery by managing access to aggregate patient data located within unaffiliated academic medical centers.

METHODS

The project adapted software from the Informatics for Integrating Biology and the Bedside (i2b2) program to connect three Clinical Translational Research Award sites: University of Washington, Seattle, University of California, Davis, and University of California, San Francisco. The project developed an iterative spiral software development model to support the implementation and coordination of this multisite data resource.

RESULTS

By standardizing technical infrastructures, policies, and semantics, the project enabled federated querying of deidentified clinical datasets stored in separate institutional environments and identified barriers to engaging users for measuring utility.

DISCUSSION

The authors discuss the iterative development and evaluation phases of the project and highlight the challenges identified and the lessons learned.

CONCLUSION

The common system architecture and translational processes provide high-level (aggregate) deidentified access to a large patient population (>5 million patients), and represent a novel and extensible resource. Enhancing the network for more focused disease areas will require research-driven partnerships represented across all partner sites.

摘要

目的

机构间临床转化研究项目探索了联邦查询工具,并研究了该工具如何通过管理对位于非附属学术医疗中心的聚合患者数据的访问来促进临床试验队列的发现。

方法

该项目从 Informatics for Integrating Biology and the Bedside(i2b2)项目中改编了软件,以连接三个临床转化研究奖站点:华盛顿大学西雅图分校、加利福尼亚大学戴维斯分校和加利福尼亚大学旧金山分校。该项目开发了一个迭代螺旋软件开发模型,以支持此多站点数据资源的实现和协调。

结果

通过标准化技术基础设施、政策和语义,该项目实现了对存储在单独机构环境中的去识别临床数据集的联邦查询,并确定了参与用户衡量实用性的障碍。

讨论

作者讨论了项目的迭代开发和评估阶段,并强调了确定的挑战和经验教训。

结论

通用系统架构和转化过程提供了对大型患者群体(>500 万患者)的高级别(聚合)去识别访问,并代表了一种新颖且可扩展的资源。增强针对更集中的疾病领域的网络将需要在所有合作伙伴站点都有研究驱动的合作伙伴关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fea/3392860/ab1e00204787/amiajnl-2011-000133fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验