Suppr超能文献

尽管存在数量级的参数不确定性,但多样化生物网络的稳健性特征仍然得以保留。

Robustness portraits of diverse biological networks conserved despite order-of-magnitude parameter uncertainty.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

Bioinformatics. 2011 Oct 15;27(20):2888-94. doi: 10.1093/bioinformatics/btr496. Epub 2011 Aug 31.

Abstract

MOTIVATION

Biological networks are robust to a wide variety of internal and external perturbations, yet fragile or sensitive to a small minority of perturbations. Due to this rare sensitivity of networks to certain perturbations, it is unclear how precisely biochemical parameters must be experimentally measured in order to accurately predict network function.

RESULTS

Here, we examined a model of cardiac β-adrenergic signaling and found that its robustness portrait, a global measure of steady-state network function, was well conserved even when all parameters were rounded to their nearest 1-2 orders of magnitude. In contrast, β-adrenergic network kinetics were more sensitive to parameter precision. This analysis was then extended to 10 additional networks, including Escherichia coli chemotaxis, stem cell differentiation and cytokine signaling, of which nine exhibited conserved robustness portraits despite the order-of-magnitude approximation of their biochemical parameters. Thus, both fragile and robust aspects of diverse biological networks are largely shaped by network topology and can be predicted despite order-of-magnitude uncertainty in biochemical parameters. These findings suggest an iterative strategy where order-of-magnitude models are used to prioritize experiments toward the fragile network elements that require precise measurements, efficiently driving model revision.

CONTACT

jsaucerman@virginia.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

生物网络对各种内部和外部的扰动具有很强的鲁棒性,但对少数扰动却很脆弱或敏感。由于网络对某些扰动的这种罕见敏感性,目前尚不清楚为了准确预测网络功能,必须在多大程度上精确测量生化参数。

结果

在这里,我们研究了心脏β-肾上腺素能信号转导的模型,发现即使将所有参数四舍五入到最接近的 1-2 个数量级,其稳态网络功能的全局度量,即稳健性特征仍然很好地保持。相比之下,β-肾上腺素能网络动力学对参数精度更敏感。然后将该分析扩展到 10 个额外的网络,包括大肠杆菌趋化性、干细胞分化和细胞因子信号转导,其中 9 个网络尽管其生化参数的数量级近似,但仍具有保守的稳健性特征。因此,不同生物网络的脆弱和稳健方面在很大程度上都由网络拓扑结构决定,尽管生化参数存在数量级的不确定性,但仍可以进行预测。这些发现表明,可以采用迭代策略,使用数量级模型来优先考虑需要精确测量的脆弱网络元素的实验,从而有效地推动模型修正。

联系方式

jsaucerman@virginia.edu

补充信息

补充数据可在“生物信息学”在线获取。

相似文献

2
Robustness in simple biochemical networks.简单生化网络中的稳健性。
Nature. 1997 Jun 26;387(6636):913-7. doi: 10.1038/43199.
7
A new measure of the robustness of biochemical networks.一种衡量生化网络稳健性的新方法。
Bioinformatics. 2005 Jun 1;21(11):2698-705. doi: 10.1093/bioinformatics/bti348. Epub 2005 Feb 24.
9
Design principles of a bacterial signalling network.细菌信号网络的设计原则。
Nature. 2005 Nov 24;438(7067):504-7. doi: 10.1038/nature04228.
10
Robust signal processing in living cells.活细胞中的稳健信号处理。
PLoS Comput Biol. 2011 Nov;7(11):e1002218. doi: 10.1371/journal.pcbi.1002218. Epub 2011 Nov 17.

引用本文的文献

4
Predicting perturbation patterns from the topology of biological networks.从生物网络的拓扑结构预测扰动模式。
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6375-E6383. doi: 10.1073/pnas.1720589115. Epub 2018 Jun 20.
6
An engineering design approach to systems biology.一种用于系统生物学的工程设计方法。
Integr Biol (Camb). 2017 Jul 17;9(7):574-583. doi: 10.1039/c7ib00014f.
9
Robustness of signal transduction pathways.信号转导通路的稳健性。
Cell Mol Life Sci. 2013 Jul;70(13):2259-69. doi: 10.1007/s00018-012-1162-7. Epub 2012 Sep 25.
10
Multiscale models of cell signaling.细胞信号的多尺度模型。
Ann Biomed Eng. 2012 Nov;40(11):2319-27. doi: 10.1007/s10439-012-0560-1. Epub 2012 Apr 3.

本文引用的文献

2
Population robustness arising from cellular heterogeneity.细胞异质性导致的群体稳健性。
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11644-9. doi: 10.1073/pnas.0913798107. Epub 2010 Jun 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验