Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China.
J Neurophysiol. 2011 Dec;106(6):3216-29. doi: 10.1152/jn.00220.2011. Epub 2011 Aug 31.
Across-trial averaging is a widely used approach to enhance the signal-to-noise ratio (SNR) of event-related potentials (ERPs). However, across-trial variability of ERP latency and amplitude may contain physiologically relevant information that is lost by across-trial averaging. Hence, we aimed to develop a novel method that uses 1) wavelet filtering (WF) to enhance the SNR of ERPs and 2) a multiple linear regression with a dispersion term (MLR(d)) that takes into account shape distortions to estimate the single-trial latency and amplitude of ERP peaks. Using simulated ERP data sets containing different levels of noise, we provide evidence that, compared with other approaches, the proposed WF+MLR(d) method yields the most accurate estimate of single-trial ERP features. When applied to a real laser-evoked potential data set, the WF+MLR(d) approach provides reliable estimation of single-trial latency, amplitude, and morphology of ERPs and thereby allows performing meaningful correlations at single-trial level. We obtained three main findings. First, WF significantly enhances the SNR of single-trial ERPs. Second, MLR(d) effectively captures and measures the variability in the morphology of single-trial ERPs, thus providing an accurate and unbiased estimate of their peak latency and amplitude. Third, intensity of pain perception significantly correlates with the single-trial estimates of N2 and P2 amplitude. These results indicate that WF+MLR(d) can be used to explore the dynamics between different ERP features, behavioral variables, and other neuroimaging measures of brain activity, thus providing new insights into the functional significance of the different brain processes underlying the brain responses to sensory stimuli.
跨trial 平均是一种广泛使用的方法,用于提高事件相关电位 (ERPs) 的信噪比 (SNR)。然而,ERP 潜伏期和振幅的跨trial 可变性可能包含通过跨trial 平均而丢失的生理相关信息。因此,我们旨在开发一种新方法,该方法使用 1) 小波滤波 (WF) 来增强 ERP 的 SNR 和 2) 具有分散项的多元线性回归 (MLR(d)),以考虑到形状变形来估计 ERP 峰的单个trial 潜伏期和振幅。使用包含不同噪声水平的模拟 ERP 数据集,我们提供了证据表明,与其他方法相比,所提出的 WF+MLR(d) 方法对单个trial ERP 特征的估计最准确。当应用于真实的激光诱发电位数据集时,WF+MLR(d) 方法可可靠地估计单个trial 的潜伏期、振幅和 ERP 的形态,从而可以在单个trial 水平上进行有意义的相关性分析。我们得出了三个主要发现。首先,WF 显著增强了单个trial ERP 的 SNR。其次,MLR(d) 有效地捕获和测量了单个trial ERP 形态的可变性,从而为其峰值潜伏期和振幅提供了准确且无偏的估计。第三,疼痛感知的强度与 N2 和 P2 振幅的单个trial 估计值显著相关。这些结果表明,WF+MLR(d) 可用于探索不同 ERP 特征、行为变量以及大脑活动的其他神经影像学测量之间的动态关系,从而为大脑对感官刺激的反应背后的不同大脑过程的功能意义提供新的见解。