Mallard Creek Polymers, Inc., 14700 Mallard Creek Road, Charlotte, NC 28262, USA.
Microbiol Mol Biol Rev. 2011 Sep;75(3):491-506, second page of table of contents. doi: 10.1128/MMBR.00010-11.
The interactions and processes which structure prokaryotic cytoplasm (water, ions, metabolites, and biomacromolecules) and ensure the fidelity of the cell cycle are reviewed from a physicochemical perspective. Recent spectroscopic and biological evidence shows that water has no active structuring role in the cytoplasm, an unnecessary notion still entertained in the literature; water acts only as a normal solvent and biochemical reactant. Subcellular structuring arises from localizations and interactions of biomacromolecules and from the growth and modifications of their surfaces by catalytic reactions. Biomacromolecular crowding is a fundamental physicochemical characteristic of cells in vivo. Though some biochemical and physiological effects of crowding (excluded volume effect) have been documented, crowding assays with polyglycols, dextrans, etc., do not properly mimic the compositional variety of biomacromolecules in vivo. In vitro crowding assays are now being designed with proteins, which better reflect biomacromolecular environments in vivo, allowing for hydrophobic bonding and screened electrostatic interactions. I elaborate further the concept of complex vectorial biochemistry, where crowded biomacromolecules structure the cytosol into electrolyte pathways and nanopools that electrochemically "wire" the cell. Noncovalent attractions between biomacromolecules transiently supercrowd biomacromolecules into vectorial, semiconducting multiplexes with a high (35 to 95%)-volume fraction of biomacromolecules; consequently, reservoirs of less crowded cytosol appear in order to maintain the experimental average crowding of ∼25% volume fraction. This nonuniform crowding model allows for fast diffusion of biomacromolecules in the uncrowded cytosolic reservoirs, while the supercrowded vectorial multiplexes conserve the remarkable repeatability of the cell cycle by preventing confusing cross talk of concurrent biochemical reactions.
从物理化学的角度回顾了原核细胞质(水、离子、代谢物和生物大分子)的相互作用和过程,以确保细胞周期的保真度。最近的光谱和生物学证据表明,水在细胞质中没有主动的结构作用,这是文献中仍然存在的一个不必要的概念;水仅作为一种正常的溶剂和生化反应物起作用。亚细胞结构的产生源于生物大分子的定位和相互作用,以及通过催化反应对其表面的生长和修饰。生物大分子拥挤是细胞体内的一个基本物理化学特征。虽然已经记录了拥挤的一些生化和生理效应(排除体积效应),但使用聚乙二醇、葡聚糖等进行的拥挤测定并不能很好地模拟体内生物大分子的组成多样性。现在正在设计使用蛋白质的体外拥挤测定,这更能反映体内的生物大分子环境,允许形成疏水性键和屏蔽静电相互作用。我进一步阐述了复杂向量生物化学的概念,其中拥挤的生物大分子将细胞质结构化成电解质途径和纳米池,这些途径和纳米池在电化学上“连接”细胞。生物大分子之间的非共价吸引力会使生物大分子暂时超拥挤成具有高(35 至 95%)生物大分子体积分数的向量、半导体多重体;因此,为了维持实验平均拥挤度约为 25%的体积分数,会出现较少拥挤的细胞质库。这种非均匀拥挤模型允许生物大分子在未拥挤的细胞质库中快速扩散,而超拥挤的向量多重体通过防止并发生化反应的混乱串扰来保持细胞周期的显著可重复性。