Department of Electronic Engineering, Fudan University, Shanghai, 200433 China.
Cogn Neurodyn. 2010 Sep;4(3):189-98. doi: 10.1007/s11571-010-9122-0. Epub 2010 Jun 27.
In this paper we propose a fast frequency domain saliency detection method that is also biologically plausible, referred to as frequency domain divisive normalization (FDN). We show that the initial feature extraction stage, common to all spatial domain approaches, can be simplified to a Fourier transform with a contourlet-like grouping of coefficients, and saliency detection can be achieved in frequency domain. Specifically, we show that divisive normalization, a model of cortical surround inhibition, can be conducted in frequency domain. Since Fourier coefficients are global in space, we extend to this model by conducting piecewise FDN (PFDN) using overlapping local patches to provide better biological plausibility. Not only do FDN and PFDN outperform current state-of-the-art methods in eye fixation prediction, they are also faster. Speed and simplicity are advantages of our frequency domain approach, and its biological plausibility is the main contribution of our paper.
在本文中,我们提出了一种快速的频域显著检测方法,该方法也具有生物学意义,称为频域除法归一化(FDN)。我们表明,所有空间域方法共有的初始特征提取阶段可以简化为具有轮廓波样系数分组的傅里叶变换,并且可以在频域中实现显著检测。具体来说,我们表明,皮层周围抑制的一种模型——除法归一化,可以在频域中进行。由于傅里叶系数在空间上是全局的,我们通过使用重叠的局部补丁来扩展该模型,以提供更好的生物学意义。FDN 和 PFDN 不仅在眼动预测方面优于当前最先进的方法,而且速度也更快。速度和简单性是我们频域方法的优势,其生物学意义是本文的主要贡献。