Suppr超能文献

预测具有不同语义内容的视觉场景中灰度图像的眼睛注视位置。

Predicting the eye fixation locations in the gray scale images in the visual scenes with different semantic contents.

作者信息

Zanganeh Momtaz Hassan, Daliri Mohammad Reza

机构信息

Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, Faculty of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, 16846-13114 Tehran, Iran ; School of Cognitive Sciences (SCS), Institute for Research in Fundamental Research (IPM), Niavaran, P.O. Box 19395-5746, Tehran, Iran.

出版信息

Cogn Neurodyn. 2016 Feb;10(1):31-47. doi: 10.1007/s11571-015-9357-x. Epub 2015 Oct 7.

Abstract

In recent years, there has been considerable interest in visual attention models (saliency map of visual attention). These models can be used to predict eye fixation locations, and thus will have many applications in various fields which leads to obtain better performance in machine vision systems. Most of these models need to be improved because they are based on bottom-up computation that does not consider top-down image semantic contents and often does not match actual eye fixation locations. In this study, we recorded the eye movements (i.e., fixations) of fourteen individuals who viewed images which consist natural (e.g., landscape, animal) and man-made (e.g., building, vehicles) scenes. We extracted the fixation locations of eye movements in two image categories. After extraction of the fixation areas (a patch around each fixation location), characteristics of these areas were evaluated as compared to non-fixation areas. The extracted features in each patch included the orientation and spatial frequency. After feature extraction phase, different statistical classifiers were trained for prediction of eye fixation locations by these features. This study connects eye-tracking results to automatic prediction of saliency regions of the images. The results showed that it is possible to predict the eye fixation locations by using of the image patches around subjects' fixation points.

摘要

近年来,人们对视觉注意力模型(视觉注意力的显著图)产生了浓厚兴趣。这些模型可用于预测眼睛注视位置,因此在各个领域都有许多应用,从而在机器视觉系统中获得更好的性能。这些模型大多需要改进,因为它们基于自下而上的计算,没有考虑自上而下的图像语义内容,并且常常与实际眼睛注视位置不匹配。在本研究中,我们记录了14名观看包含自然场景(如风景、动物)和人造场景(如建筑、车辆)图像的个体的眼动(即注视)情况。我们在两种图像类别中提取了眼动的注视位置。在提取注视区域(每个注视位置周围的一个小块)后,将这些区域的特征与非注视区域进行比较评估。每个小块中提取的特征包括方向和空间频率。在特征提取阶段之后,通过这些特征训练不同的统计分类器来预测眼睛注视位置。本研究将眼动追踪结果与图像显著区域的自动预测联系起来。结果表明,利用受试者注视点周围的图像小块可以预测眼睛注视位置。

相似文献

5
Saliency-driven system models for cell analysis with deep learning.基于深度学习的细胞分析的显著驱动系统模型。
Comput Methods Programs Biomed. 2019 Dec;182:105053. doi: 10.1016/j.cmpb.2019.105053. Epub 2019 Aug 26.
6
Scene content selected by active vision.通过主动视觉选择的场景内容。
Spat Vis. 2003;16(2):125-54. doi: 10.1163/15685680360511645.
8
Learning to Predict Eye Fixations via Multiresolution Convolutional Neural Networks.通过多分辨率卷积神经网络学习预测眼动。
IEEE Trans Neural Netw Learn Syst. 2018 Feb;29(2):392-404. doi: 10.1109/TNNLS.2016.2628878. Epub 2016 Nov 29.
10
Learning to Model Task-Oriented Attention.学习为面向任务的注意力建模。
Comput Intell Neurosci. 2016;2016:2381451. doi: 10.1155/2016/2381451. Epub 2016 May 9.

本文引用的文献

5
State-of-the-art in visual attention modeling.视觉注意建模的最新进展。
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):185-207. doi: 10.1109/TPAMI.2012.89.
10
A neural network model of attention-modulated neurodynamics.一个注意力调制神经动力学的神经网络模型。
Cogn Neurodyn. 2007 Dec;1(4):275-85. doi: 10.1007/s11571-007-9028-7. Epub 2007 Oct 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验