Suppr超能文献

在活体脑切片深处的突触中进行 STED 纳米显微镜观察肌动蛋白动力学。

STED nanoscopy of actin dynamics in synapses deep inside living brain slices.

机构信息

Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

Biophys J. 2011 Sep 7;101(5):1277-84. doi: 10.1016/j.bpj.2011.07.027.

Abstract

It is difficult to investigate the mechanisms that mediate long-term changes in synapse function because synapses are small and deeply embedded inside brain tissue. Although recent fluorescence nanoscopy techniques afford improved resolution, they have so far been restricted to dissociated cells or tissue surfaces. However, to study synapses under realistic conditions, one must image several cell layers deep inside more-intact, three-dimensional preparations that exhibit strong light scattering, such as brain slices or brains in vivo. Using aberration-reducing optics, we demonstrate that it is possible to achieve stimulated emission depletion superresolution imaging deep inside scattering biological tissue. To illustrate the power of this novel (to our knowledge) approach, we resolved distinct distributions of actin inside dendrites and spines with a resolution of 60-80 nm in living organotypic brain slices at depths up to 120 μm. In addition, time-lapse stimulated emission depletion imaging revealed changes in actin-based structures inside spines and spine necks, and showed that these dynamics can be modulated by neuronal activity. Our approach greatly facilitates investigations of actin dynamics at the nanoscale within functionally intact brain tissue.

摘要

由于突触体积小且深埋在脑组织内部,因此很难研究介导突触功能长期变化的机制。尽管最近的荧光纳米显微镜技术提供了更高的分辨率,但它们迄今为止仅限于分离细胞或组织表面。然而,要在更真实的条件下研究突触,必须对具有强光散射的更完整的三维制剂(如脑切片或活体脑)进行多层成像。我们使用像差校正光学元件,证明了在散射生物组织内部实现受激发射耗散超分辨率成像的可能性。为了说明这种新颖的(据我们所知)方法的强大功能,我们在深度达 120μm 的活体器官型脑切片中以 60-80nm 的分辨率解析了树突和棘突内的肌动蛋白的不同分布。此外,延时受激发射耗散成像揭示了棘突和棘突颈部内基于肌动蛋白的结构的变化,并表明神经元活动可以调节这些动力学。我们的方法极大地促进了在功能完整的脑组织内对纳米尺度上肌动蛋白动力学的研究。

相似文献

4
Super-resolution STED microscopy in live brain tissue.活脑组织中的超高分辨率 STED 显微镜。
Neurobiol Dis. 2021 Aug;156:105420. doi: 10.1016/j.nbd.2021.105420. Epub 2021 Jun 5.
5
9
STED Imaging in Drosophila Brain Slices.果蝇脑片的受激发射损耗成像
Methods Mol Biol. 2017;1563:143-150. doi: 10.1007/978-1-4939-6810-7_10.

引用本文的文献

1
3
MINFLUX fluorescence nanoscopy in biological tissue.生物组织中的MINFLUX荧光纳米显微镜技术。
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2422020121. doi: 10.1073/pnas.2422020121. Epub 2024 Dec 20.
4
Super-resolution STED imaging in the inner and outer whole-mount mouse retina.小鼠视网膜内外全层的超分辨率受激发射损耗成像
Front Ophthalmol (Lausanne). 2023 Apr 6;3:1126338. doi: 10.3389/fopht.2023.1126338. eCollection 2023.
7
Impact of a tilted coverslip on two-photon and STED microscopy.倾斜盖玻片对双光子和受激发射损耗显微镜的影响。
Biomed Opt Express. 2024 Jan 16;15(2):743-752. doi: 10.1364/BOE.510512. eCollection 2024 Feb 1.
8
Introduction: What Are Dendritic Spines?简介:什么是树突棘?
Adv Neurobiol. 2023;34:1-68. doi: 10.1007/978-3-031-36159-3_1.
9
Adaptive optics in super-resolution microscopy.超分辨率显微镜中的自适应光学技术。
Biophys Rep. 2021 Aug 31;7(4):267-279. doi: 10.52601/bpr.2021.210015.

本文引用的文献

4
Actin in dendritic spines: connecting dynamics to function.肌动蛋白在树突棘中的作用:连接动力学与功能。
J Cell Biol. 2010 May 17;189(4):619-29. doi: 10.1083/jcb.201003008. Epub 2010 May 10.
6
Superresolution imaging using single-molecule localization.使用单分子定位的超分辨率成像
Annu Rev Phys Chem. 2010;61:345-67. doi: 10.1146/annurev.physchem.012809.103444.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验