Suppr超能文献

色像差和波前像差:典型和极端视网膜图像质量下的L、M和S视锥细胞刺激

Chromatic and wavefront aberrations: L-, M- and S-cone stimulation with typical and extreme retinal image quality.

作者信息

Autrusseau Florent, Thibos Larry, Shevell Steven K

机构信息

Psychology, University of Chicago, 940 E. 57th Street, Chicago, IL 60637, USA.

出版信息

Vision Res. 2011 Nov;51(21-22):2282-94. doi: 10.1016/j.visres.2011.08.020. Epub 2011 Aug 31.

Abstract

The first physiological process influencing visual perception is the optics of the eye. The retinal image is affected by diffraction at the pupil and several kinds of optical imperfections. A model of the eye (Thibos & Bradley, 1999), which takes account of pupil aperture, chromatic aberration and wavefront aberrations, was used to determine wavelength-dependent point-spread functions, which can be convolved with any stimulus specified by its spectral distribution of light at each point. The resulting retinal spectral distribution of light was used to determine the spatial distribution of stimulation for each cone type (S, M and L). In addition, individual differences in retinal-image quality were assessed using a statistical model (Thibos, Bradley, & Hong, 2002) for population values of Zernike coefficients, which characterize imperfections of the eye's optics. The median and relatively extreme (5th and 95th percentile) modulation transfer functions (MTFs) for the S, M and L cones were determined for equal-energy-spectrum (EES) 'white' light. The typical MTF for S cones was more similar to the MTF for L and M cones after taking wavefront aberrations into account but even with aberrations the S-cone MTF typically was below the M- or L-cone MTF by a factor of at least 10 (one log unit). More generally, the model presented here provides a technique for estimating retinal image quality for the S, M and L cones for any stimulus presented to the eye. The model is applied to some informative examples.

摘要

影响视觉感知的第一个生理过程是眼睛的光学原理。视网膜图像会受到瞳孔处的衍射以及几种光学缺陷的影响。使用一种考虑了瞳孔孔径、色差和波前像差的眼睛模型(蒂博斯和布拉德利,1999年)来确定与波长相关的点扩散函数,该函数可与由每个点的光的光谱分布指定的任何刺激进行卷积。由此得到的视网膜光光谱分布用于确定每种视锥细胞类型(S、M和L)的刺激空间分布。此外,使用一种针对泽尼克系数总体值的统计模型(蒂博斯、布拉德利和洪,2002年)来评估视网膜图像质量的个体差异,泽尼克系数表征了眼睛光学的缺陷。针对等能谱(EES)“白色”光,确定了S、M和L视锥细胞的中值以及相对极端值(第5和第95百分位数)调制传递函数(MTF)。考虑波前像差后,S视锥细胞的典型MTF与L和M视锥细胞的MTF更为相似,但即使存在像差,S视锥细胞的MTF通常也比M或L视锥细胞的MTF低至少10倍(一个对数单位)。更一般地说,这里提出的模型提供了一种技术,可用于估计呈现给眼睛任何刺激时S、M和L视锥细胞的视网膜图像质量。该模型应用于一些有参考价值的例子。

相似文献

1
Chromatic and wavefront aberrations: L-, M- and S-cone stimulation with typical and extreme retinal image quality.
Vision Res. 2011 Nov;51(21-22):2282-94. doi: 10.1016/j.visres.2011.08.020. Epub 2011 Aug 31.
2
Quantifying natural higher order aberration(s) in emmetropic human eyes and objectively evaluating retinal image quality.
Ophthalmic Physiol Opt. 2025 May;45(3):769-778. doi: 10.1111/opo.13456. Epub 2025 Feb 10.
4
Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology.
Exp Eye Res. 2019 Aug;185:107683. doi: 10.1016/j.exer.2019.05.023. Epub 2019 May 31.
5
Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina.
J Neurosci. 2017 Sep 27;37(39):9498-9509. doi: 10.1523/JNEUROSCI.0529-17.2017. Epub 2017 Sep 4.
6
Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina.
J Neurosci. 2019 Oct 2;39(40):7893-7909. doi: 10.1523/JNEUROSCI.0778-19.2019. Epub 2019 Aug 12.
7
Wave aberration of human eyes and new descriptors of image optical quality and visual performance.
J Cataract Refract Surg. 2010 Feb;36(2):313-31. doi: 10.1016/j.jcrs.2009.09.026.
9
The elementary representation of spatial and color vision in the human retina.
Sci Adv. 2016 Sep 14;2(9):e1600797. doi: 10.1126/sciadv.1600797. eCollection 2016 Sep.

引用本文的文献

1
Color, Pattern, and the Retinal Cone Mosaic.
Curr Opin Behav Sci. 2019 Dec;30:41-47. doi: 10.1016/j.cobeha.2019.05.005. Epub 2019 Jul 5.
2
How chromatic cues can guide human eye growth to achieve good focus.
J Vis. 2021 May 3;21(5):11. doi: 10.1167/jov.21.5.11.
3
IMI Accommodation and Binocular Vision in Myopia Development and Progression.
Invest Ophthalmol Vis Sci. 2021 Apr 28;62(5):4. doi: 10.1167/iovs.62.5.4.
4
Two-dimensional simulation of eccentric photorefraction images for ametropes: factors influencing the measurement.
Ophthalmic Physiol Opt. 2018 Jul;38(4):432-446. doi: 10.1111/opo.12563. Epub 2018 May 7.
5
Optimal defocus estimation in individual natural images.
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16849-54. doi: 10.1073/pnas.1108491108. Epub 2011 Sep 19.

本文引用的文献

1
The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans.
Appl Opt. 1992 Jul 1;31(19):3594-600. doi: 10.1364/AO.31.003594.
2
Wavelength adjustment using an eye model from aberrometry data.
J Opt Soc Am A Opt Image Sci Vis. 2010 Jul 1;27(7):1561-74. doi: 10.1364/JOSAA.27.001561.
3
Retinal image quality for virtual eyes generated by a statistical model of ocular wavefront aberrations.
Ophthalmic Physiol Opt. 2009 May;29(3):288-91. doi: 10.1111/j.1475-1313.2009.00662.x.
4
Calculation of retinal image quality for polychromatic light.
J Opt Soc Am A Opt Image Sci Vis. 2008 Oct;25(10):2395-407. doi: 10.1364/josaa.25.002395.
5
Normal-eye Zernike coefficients and root-mean-square wavefront errors.
J Cataract Refract Surg. 2006 Dec;32(12):2064-74. doi: 10.1016/j.jcrs.2006.07.022.
6
Effects of interactions among wave aberrations on optical image quality.
Vision Res. 2006 Sep;46(18):3009-16. doi: 10.1016/j.visres.2006.03.005. Epub 2006 May 12.
7
Wave aberrations of the isolated crystalline lens.
J Vis. 2003 Apr 16;4(4):250-61. doi: 10.1167/4.4.1.
8
Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
J Opt Soc Am A Opt Image Sci Vis. 2002 Dec;19(12):2329-48. doi: 10.1364/josaa.19.002329.
9
A statistical model of the aberration structure of normal, well-corrected eyes.
Ophthalmic Physiol Opt. 2002 Sep;22(5):427-33. doi: 10.1046/j.1475-1313.2002.00059.x.
10
Ocular wave-front aberration statistics in a normal young population.
Vision Res. 2002 Jun;42(13):1611-7. doi: 10.1016/s0042-6989(02)00085-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验