Suppr超能文献

通过计算设计的蛋白质-配体相互作用展示的改进的自由能景观量化

Improved Free-Energy Landscape Quantification Illustrated with a Computationally Designed Protein-Ligand Interaction.

作者信息

Van Patten William J, Walder Robert, Adhikari Ayush, Okoniewski Stephen R, Ravichandran Rashmi, Tinberg Christine E, Baker David, Perkins Thomas T

机构信息

JILA, National Institute of Standards and Technology and the University of Colorado, Department of Physics and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, 440 UCB, Boulder, CO, 80309-0440, USA.

University of Washington, Seattle, Department of Biochemistry, Institute for Protein Design and Howard Hughes Medical Institute, Seattle, Washington, 98195, USA.

出版信息

Chemphyschem. 2018 Jan 5;19(1):19-23. doi: 10.1002/cphc.201701147. Epub 2017 Dec 4.

Abstract

Quantifying the energy landscape underlying protein-ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single-molecule technique is atomic force microscopy (AFM)-based force spectroscopy, which generally yields the zero-force dissociation rate constant (k ) and the distance to the transition state (Δx ). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.3 binding to its target ligand, digoxigenin. Enhanced data quality enabled an analysis that yielded the height of the transition state (ΔG =6.3±0.2 kcal mol ) and the shape of the energy barrier at the transition state (linear-cubic) in addition to the traditional parameters [k (=4±0.1×10  s ) and Δx (=8.3±0.1 Å)]. We expect this automated and relatively rapid assay to provide a more complete energy landscape description of protein-ligand interactions and, more broadly, the diverse systems studied by AFM-based force spectroscopy.

摘要

对蛋白质-配体相互作用的能量景观进行量化,有助于加深对分子识别的理解。一种强大且易于使用的单分子技术是基于原子力显微镜(AFM)的力谱技术,该技术通常可得出零力解离速率常数(k)和到过渡态的距离(Δx)。在此,我们介绍一种改进的AFM检测方法,并将其应用于探测通过计算设计的蛋白质DIG10.3与其靶配体地高辛的结合。更高的数据质量使得分析不仅能够得出传统参数[k(=4±0.1×10⁻⁵ s⁻¹)和Δx(=8.3±0.1 Å)],还能得出过渡态的高度(ΔG = 6.3±0.2 kcal mol⁻¹)以及过渡态能量屏障的形状(线性-立方)。我们期望这种自动化且相对快速的检测方法能够更完整地描述蛋白质-配体相互作用的能量景观,更广泛地说,能够更完整地描述基于AFM的力谱技术所研究的各种系统。

相似文献

1
Improved Free-Energy Landscape Quantification Illustrated with a Computationally Designed Protein-Ligand Interaction.
Chemphyschem. 2018 Jan 5;19(1):19-23. doi: 10.1002/cphc.201701147. Epub 2017 Dec 4.
2
FEATHER: Automated Analysis of Force Spectroscopy Unbinding and Unfolding Data via a Bayesian Algorithm.
Biophys J. 2018 Sep 4;115(5):757-762. doi: 10.1016/j.bpj.2018.07.031. Epub 2018 Aug 7.
3
Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction.
Micron. 2007;38(5):446-61. doi: 10.1016/j.micron.2006.06.014. Epub 2006 Jul 28.
5
Dynamic force spectroscopy of the digoxigenin-antibody complex.
FEBS Lett. 2006 Jan 23;580(2):505-9. doi: 10.1016/j.febslet.2005.12.052. Epub 2005 Dec 27.
6
Single-molecule force spectroscopy study of interactions between angiotensin II type 1 receptor and different biased ligands in living cells.
Anal Bioanal Chem. 2018 May;410(14):3275-3284. doi: 10.1007/s00216-018-0956-3. Epub 2018 Feb 28.
8
Probing Single Virus Binding Sites on Living Mammalian Cells Using AFM.
Methods Mol Biol. 2018;1814:483-514. doi: 10.1007/978-1-4939-8591-3_29.
10
Mapping the energy landscape of biomolecules using single molecule force correlation spectroscopy: theory and applications.
Biophys J. 2006 Jun 1;90(11):3827-41. doi: 10.1529/biophysj.105.075937. Epub 2006 Mar 13.

引用本文的文献

本文引用的文献

1
Rapid Characterization of a Mechanically Labile α-Helical Protein Enabled by Efficient Site-Specific Bioconjugation.
J Am Chem Soc. 2017 Jul 26;139(29):9867-9875. doi: 10.1021/jacs.7b02958. Epub 2017 Jul 17.
2
Acoustic force spectroscopy.
Nat Methods. 2015 Jan;12(1):47-50. doi: 10.1038/nmeth.3183. Epub 2014 Nov 24.
3
From genes to protein mechanics on a chip.
Nat Methods. 2014 Nov;11(11):1127-1130. doi: 10.1038/nmeth.3099. Epub 2014 Sep 7.
4
Single-molecule analysis of the recognition forces underlying nucleo-cytoplasmic transport.
Angew Chem Int Ed Engl. 2013 Sep 23;52(39):10356-9. doi: 10.1002/anie.201305359. Epub 2013 Sep 5.
5
Computational design of ligand-binding proteins with high affinity and selectivity.
Nature. 2013 Sep 12;501(7466):212-216. doi: 10.1038/nature12443. Epub 2013 Sep 4.
6
Rigid DNA beams for high-resolution single-molecule mechanics.
Angew Chem Int Ed Engl. 2013 Jul 22;52(30):7766-71. doi: 10.1002/anie.201302727. Epub 2013 Jun 21.
7
Single-molecule dissection of the high-affinity cohesin-dockerin complex.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20431-6. doi: 10.1073/pnas.1211929109. Epub 2012 Nov 27.
8
Interpreting the widespread nonlinear force spectra of intermolecular bonds.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13573-8. doi: 10.1073/pnas.1202946109. Epub 2012 Aug 6.
9
10
Single-molecule protein unfolding and refolding using atomic force microscopy.
Methods Mol Biol. 2011;783:233-50. doi: 10.1007/978-1-61779-282-3_13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验