Suppr超能文献

钙离子结合增强了古细菌晶状体蛋白的机械稳定性。

Ca2+ binding enhanced mechanical stability of an archaeal crystallin.

作者信息

Ramanujam Venkatraman, Kotamarthi Hema Chandra, Ainavarapu Sri Rama Koti

机构信息

Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India.

出版信息

PLoS One. 2014 Apr 11;9(4):e94513. doi: 10.1371/journal.pone.0094513. eCollection 2014.

Abstract

Structural topology plays an important role in protein mechanical stability. Proteins with β-sandwich topology consisting of Greek key structural motifs, for example, I27 of muscle titin and (10)FNIII of fibronectin, are mechanically resistant as shown by single-molecule force spectroscopy (SMFS). In proteins with β-sandwich topology, if the terminal strands are directly connected by backbone H-bonding then this geometry can serve as a "mechanical clamp". Proteins with this geometry are shown to have very high unfolding forces. Here, we set out to explore the mechanical properties of a protein, M-crystallin, which belongs to β-sandwich topology consisting of Greek key motifs but its overall structure lacks the "mechanical clamp" geometry at the termini. M-crystallin is a Ca(2+) binding protein from Methanosarcina acetivorans that is evolutionarily related to the vertebrate eye lens β and γ-crystallins. We constructed an octamer of crystallin, (M-crystallin)8, and using SMFS, we show that M-crystallin unfolds in a two-state manner with an unfolding force ∼ 90 pN (at a pulling speed of 1000 nm/sec), which is much lower than that of I27. Our study highlights that the β-sandwich topology proteins with a different strand-connectivity than that of I27 and (10)FNIII, as well as lacking "mechanical clamp" geometry, can be mechanically resistant. Furthermore, Ca(2+) binding not only stabilizes M-crystallin by 11.4 kcal/mol but also increases its unfolding force by ∼ 35 pN at the same pulling speed. The differences in the mechanical properties of apo and holo M-crystallins are further characterized using pulling speed dependent measurements and they show that Ca(2+) binding reduces the unfolding potential width from 0.55 nm to 0.38 nm. These results are explained using a simple two-state unfolding energy landscape.

摘要

结构拓扑在蛋白质机械稳定性中起着重要作用。例如,由希腊钥匙结构基序组成的具有β-三明治拓扑结构的蛋白质,如肌联蛋白的I27和纤连蛋白的(10)FNIII,单分子力谱(SMFS)表明它们具有机械抗性。在具有β-三明治拓扑结构的蛋白质中,如果末端链通过主链氢键直接连接,那么这种几何结构可以作为一个“机械夹子”。具有这种几何结构的蛋白质显示出非常高的解折叠力。在这里,我们着手探索一种蛋白质M-晶体蛋白的机械性能,它属于由希腊钥匙基序组成的β-三明治拓扑结构,但它的整体结构在末端缺乏“机械夹子”几何结构。M-晶体蛋白是一种来自嗜乙酸甲烷八叠球菌的Ca(2+)结合蛋白,在进化上与脊椎动物眼晶状体的β和γ-晶体蛋白相关。我们构建了晶体蛋白八聚体(M-晶体蛋白)8,并使用SMFS表明,M-晶体蛋白以两态方式解折叠,解折叠力约为90 pN(在1000 nm/秒的拉伸速度下),这远低于I27的解折叠力。我们的研究强调,与I27和(10)FNIII具有不同链连接性且缺乏“机械夹子”几何结构的β-三明治拓扑结构蛋白质也可以具有机械抗性。此外,Ca(2+)结合不仅使M-晶体蛋白稳定11.4 kcal/mol,而且在相同拉伸速度下使其解折叠力增加约35 pN。使用依赖于拉伸速度的测量进一步表征了脱辅基和全M-晶体蛋白机械性能的差异,结果表明Ca(2+)结合使解折叠势垒宽度从0.55 nm减小到0.38 nm。使用简单的两态解折叠能量图景解释了这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/315c/3984160/3f6897cb0293/pone.0094513.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验