Ramanujam Venkatraman, Kotamarthi Hema Chandra, Ainavarapu Sri Rama Koti
Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India.
PLoS One. 2014 Apr 11;9(4):e94513. doi: 10.1371/journal.pone.0094513. eCollection 2014.
Structural topology plays an important role in protein mechanical stability. Proteins with β-sandwich topology consisting of Greek key structural motifs, for example, I27 of muscle titin and (10)FNIII of fibronectin, are mechanically resistant as shown by single-molecule force spectroscopy (SMFS). In proteins with β-sandwich topology, if the terminal strands are directly connected by backbone H-bonding then this geometry can serve as a "mechanical clamp". Proteins with this geometry are shown to have very high unfolding forces. Here, we set out to explore the mechanical properties of a protein, M-crystallin, which belongs to β-sandwich topology consisting of Greek key motifs but its overall structure lacks the "mechanical clamp" geometry at the termini. M-crystallin is a Ca(2+) binding protein from Methanosarcina acetivorans that is evolutionarily related to the vertebrate eye lens β and γ-crystallins. We constructed an octamer of crystallin, (M-crystallin)8, and using SMFS, we show that M-crystallin unfolds in a two-state manner with an unfolding force ∼ 90 pN (at a pulling speed of 1000 nm/sec), which is much lower than that of I27. Our study highlights that the β-sandwich topology proteins with a different strand-connectivity than that of I27 and (10)FNIII, as well as lacking "mechanical clamp" geometry, can be mechanically resistant. Furthermore, Ca(2+) binding not only stabilizes M-crystallin by 11.4 kcal/mol but also increases its unfolding force by ∼ 35 pN at the same pulling speed. The differences in the mechanical properties of apo and holo M-crystallins are further characterized using pulling speed dependent measurements and they show that Ca(2+) binding reduces the unfolding potential width from 0.55 nm to 0.38 nm. These results are explained using a simple two-state unfolding energy landscape.
结构拓扑在蛋白质机械稳定性中起着重要作用。例如,由希腊钥匙结构基序组成的具有β-三明治拓扑结构的蛋白质,如肌联蛋白的I27和纤连蛋白的(10)FNIII,单分子力谱(SMFS)表明它们具有机械抗性。在具有β-三明治拓扑结构的蛋白质中,如果末端链通过主链氢键直接连接,那么这种几何结构可以作为一个“机械夹子”。具有这种几何结构的蛋白质显示出非常高的解折叠力。在这里,我们着手探索一种蛋白质M-晶体蛋白的机械性能,它属于由希腊钥匙基序组成的β-三明治拓扑结构,但它的整体结构在末端缺乏“机械夹子”几何结构。M-晶体蛋白是一种来自嗜乙酸甲烷八叠球菌的Ca(2+)结合蛋白,在进化上与脊椎动物眼晶状体的β和γ-晶体蛋白相关。我们构建了晶体蛋白八聚体(M-晶体蛋白)8,并使用SMFS表明,M-晶体蛋白以两态方式解折叠,解折叠力约为90 pN(在1000 nm/秒的拉伸速度下),这远低于I27的解折叠力。我们的研究强调,与I27和(10)FNIII具有不同链连接性且缺乏“机械夹子”几何结构的β-三明治拓扑结构蛋白质也可以具有机械抗性。此外,Ca(2+)结合不仅使M-晶体蛋白稳定11.4 kcal/mol,而且在相同拉伸速度下使其解折叠力增加约35 pN。使用依赖于拉伸速度的测量进一步表征了脱辅基和全M-晶体蛋白机械性能的差异,结果表明Ca(2+)结合使解折叠势垒宽度从0.55 nm减小到0.38 nm。使用简单的两态解折叠能量图景解释了这些结果。