Suppr超能文献

中空反谐振反射光波导中的微孔和纳米孔制造

Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

作者信息

Holmes Matthew R, Shang Tao, Hawkins Aaron R, Rudenko Mikhail, Measor Philip, Schmidt Holger

机构信息

Brigham Young University, Electrical and Computer Engineering Department, 459 Clyde Building, Provo, Utah 84602.

出版信息

J Micro Nanolithogr MEMS MOEMS. 2010;9(2):23004. doi: 10.1117/1.3378152.

Abstract

We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

摘要

我们展示了在中空抗反射反射光波导中制造微孔和纳米孔特征,以创建一个能够对单个纳米颗粒进行尺寸选择和检测的电学和光学分析平台。微孔(直径4μm)通过反应离子蚀刻穿过波导的顶部SiO₂和SiN层,在中空芯上方留下一层薄的SiN膜。使用聚焦离子束蚀刻工艺在SiN膜中形成纳米孔,该工艺可控制孔径。制造出了直径小至20nm的开口。光学损耗测量表明,微孔不会显著改变沿波导的损耗。

相似文献

1
Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.
J Micro Nanolithogr MEMS MOEMS. 2010;9(2):23004. doi: 10.1117/1.3378152.
2
Integrated ARROW waveguides with hollow cores.
Opt Express. 2004 Jun 14;12(12):2710-5. doi: 10.1364/opex.12.002710.
3
Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission.
IEEE Photonics Technol Lett. 2010 Jul 12;22(15):1147-1149. doi: 10.1109/LPT.2010.2051145.
4
Sub-10-nm-thick SiN nanopore membranes fabricated using the SiOsacrificial layer process.
Nanotechnology. 2021 Jul 20;32(41). doi: 10.1088/1361-6528/ac10e3.
5
Optimization of Y-splitting antiresonant reflecting optical waveguides-based rib waveguides.
Opt Eng. 2016 Oct;55(10). doi: 10.1117/1.OE.55.10.100505. Epub 2016 Oct 31.
6
Waveguide loss optimization in hollow-core ARROW waveguides.
Opt Express. 2005 Nov 14;13(23):9331-6. doi: 10.1364/opex.13.009331.
8
Bend losses in flexible polyurethane antiresonant terahertz waveguides.
Opt Express. 2021 Aug 30;29(18):28692-28703. doi: 10.1364/OE.435920.
10
Control of shape and material composition of solid-state nanopores.
Nano Lett. 2009 Jan;9(1):479-84. doi: 10.1021/nl803613s.

引用本文的文献

1
3D-Nanoprinted Antiresonant Hollow-Core Microgap Waveguide: An on-Chip Platform for Integrated Photonic Devices and Sensors.
ACS Photonics. 2022 Sep 21;9(9):3012-3024. doi: 10.1021/acsphotonics.2c00725. Epub 2022 Sep 2.
2
Recent advances in integrated solid-state nanopore sensors.
Lab Chip. 2021 Aug 21;21(16):3030-3052. doi: 10.1039/d1lc00294e. Epub 2021 Jun 17.
3
On demand delivery and analysis of single molecules on a programmable nanopore-optofluidic device.
Nat Commun. 2019 Aug 16;10(1):3712. doi: 10.1038/s41467-019-11723-7.
4
Optofluidic devices with integrated solid-state nanopores.
Mikrochim Acta. 2016 Apr;183(4):1275-1287. doi: 10.1007/s00604-016-1758-y. Epub 2016 Jan 27.
5
Electro-optical detection of single λ-DNA.
Chem Commun (Camb). 2015 Feb 7;51(11):2084-7. doi: 10.1039/c4cc07591a.
6
Effect of fabrication-dependent shape and composition of solid-state nanopores on single nanoparticle detection.
ACS Nano. 2013 Jun 25;7(6):5621-7. doi: 10.1021/nn4020642. Epub 2013 May 28.
7
Optofluidic Microsystems for Chemical and Biological Analysis.
Nat Photonics. 2011 Oct 1;5(10):591-597. doi: 10.1038/nphoton.2011.206.

本文引用的文献

1
Optofluidic waveguides: II. Fabrication and structures.
Microfluid Nanofluidics. 2007 Jul 19;4(1-2):17-32. doi: 10.1007/s10404-007-0194-z.
2
Optofluidic waveguides: I. Concepts and implementations.
Microfluid Nanofluidics. 2008 Jan 1;4(1-2):3-16. doi: 10.1007/s10404-007-0199-7.
3
Nanopore sculpting with noble gas ions.
J Appl Phys. 2006;100(2):24914-249146. doi: 10.1063/1.2216880.
5
Integrated ARROW waveguides with hollow cores.
Opt Express. 2004 Jun 14;12(12):2710-5. doi: 10.1364/opex.12.002710.
6
Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip.
Biosens Bioelectron. 2009 Jul 15;24(11):3258-63. doi: 10.1016/j.bios.2009.04.005. Epub 2009 Apr 16.
7
Solid-state nanopores.
Nat Nanotechnol. 2007 Apr;2(4):209-15. doi: 10.1038/nnano.2007.27. Epub 2007 Mar 4.
8
Hollow-core waveguide characterization by optically induced particle transport.
Opt Lett. 2008 Apr 1;33(7):672-4. doi: 10.1364/ol.33.000672.
9
Planar optofluidic chip for single particle detection, manipulation, and analysis.
Lab Chip. 2007 Sep;7(9):1171-5. doi: 10.1039/b708861b. Epub 2007 Jun 27.
10
Single-molecule detection sensitivity using planar integrated optics on a chip.
Opt Lett. 2006 Jul 15;31(14):2136-8. doi: 10.1364/ol.31.002136.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验