Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, GA 30602, USA.
Biochemistry. 2013 Jan 8;52(1):4-18. doi: 10.1021/bi3014533. Epub 2012 Dec 26.
Nickel-containing superoxide dismutases (NiSODs) represent a novel approach to the detoxification of superoxide in biology and thus contribute to the biodiversity of mechanisms for the removal of reactive oxygen species (ROS). While Ni ions play critical roles in anaerobic microbial redox (hydrogenases and CO dehydrogenase/acetyl coenzyme A synthase), they have never been associated with oxygen metabolism. Several SODs have been characterized from numerous sources and are classified by their catalytic metal as Cu/ZnSOD, MnSOD, or FeSOD. Whereas aqueous solutions of Cu(II), Mn(II), and Fe(II) ions are capable of catalyzing the dismutation of superoxide, solutions of Ni(II) are not. Nonetheless, NiSOD catalyzes the reaction at the diffusion-controlled limit (10(9) M(-1) s(-1)). To do this, nature has created a Ni coordination unit with the appropriate Ni(III/II) redox potential (0.090 V vs Ag/AgCl). This potential is achieved by a unique ligand set comprised of residues from the N-terminus of the protein: Cys2 and Cys6 thiolates, the amino terminus and imidazole side chain of His1, and a peptide N-donor from Cys2. Over the past several years, synthetic modeling efforts by several groups have provided insight into understanding the intrinsic properties of this unusual Ni coordination site. Such analogues have revealed information regarding the (i) electrochemical properties that support Ni-based redox, (ii) oxidative protection and/or stability of the coordinated CysS ligands, (iii) probable H(+) sources for H(2)O(2) formation, and (iv) nature of the Ni coordination geometry throughout catalysis. This review includes the results and implications of such biomimetic work as it pertains to the structure and function of NiSOD.
镍结合超氧化物歧化酶(NiSOD)代表了一种生物学中超氧化物解毒的新方法,从而为活性氧(ROS)去除机制的生物多样性做出了贡献。虽然 Ni 离子在厌氧微生物氧化还原(氢酶和 CO 脱氢酶/乙酰辅酶 A 合酶)中起着关键作用,但它们从未与氧代谢有关。已经从许多来源中鉴定出几种 SOD,并根据其催化金属将其分类为 Cu/ZnSOD、MnSOD 或 FeSOD。虽然 Cu(II)、Mn(II)和 Fe(II)离子的水溶液能够催化超氧化物的歧化反应,但 Ni(II)的溶液不能。尽管如此,NiSOD 仍能在扩散控制极限下(10(9) M(-1) s(-1))催化该反应。为了做到这一点,自然界创造了一个具有适当 Ni(III/II)氧化还原电位(0.090 V vs Ag/AgCl)的 Ni 配位单元。通过由蛋白质的 N 末端组成的独特配体集来实现该潜在性:Cys2 和 Cys6 硫醇化物、His1 的氨基末端和咪唑侧链以及来自 Cys2 的肽 N 供体。在过去的几年中,几个小组的合成建模工作提供了对理解这种不寻常的 Ni 配位位点内在特性的深入了解。此类类似物提供了有关(i)支持 Ni 基氧化还原的电化学性质、(ii)配位 CysS 配体的氧化保护和/或稳定性、(iii)H2O2 形成的可能 H+源以及(iv)Ni 配位几何形状的信息。 整个催化过程。本综述包括此类仿生工作的结果和影响,因为它涉及 NiSOD 的结构和功能。