Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
Tissue Eng Part A. 2012 Mar;18(5-6):598-608. doi: 10.1089/ten.TEA.2011.0338. Epub 2011 Nov 9.
Tendon injuries are common clinical problems and are difficult to treat. In particular, the tendon-to-bone insertion site, once damaged, does not regenerate its complex zonal arrangement. A potential treatment for tendon injuries is to replace injured tendons with bioengineered tendons. However, the bioengineering of tendon will require a detailed understanding of the normal development of tendon, which is currently lacking. Here, we use the mouse patellar tendon as a model to describe the spatial and temporal pattern of expression of molecular markers for tendon differentiation from late fetal life to 2 weeks after birth. We found that collagen I, fibromodulin, and tenomodulin were expressed throughout the tendon, whereas tenascin-C, biglycan, and cartilage oligomeric protein were concentrated in the insertion site during this period. We also identified signaling pathways that are activated both throughout the developing tendon, for example, transforming growth factor beta and bone morphogenetic protein, and specifically in the insertion site, for example, hedgehog pathway. Using a mouse line expressing green fluorescent protein in all tenocytes, we also found that tenocyte cell proliferation occurs at highest levels during late fetal life, and declines to very low levels by 2 weeks after birth. These data will allow both the functional analysis of specific signaling pathways in tenocyte development and their application to tissue-engineering studies in vitro.
肌腱损伤是常见的临床问题,且难以治疗。特别是,一旦肌腱-骨插入部位受损,其复杂的区域排列就不会再生。一种治疗肌腱损伤的潜在方法是用生物工程肌腱替代受损的肌腱。然而,肌腱的生物工程将需要详细了解肌腱的正常发育,而目前这方面的知识还很缺乏。在这里,我们使用小鼠髌腱作为模型,描述了从胎晚期到出生后 2 周肌腱分化的分子标记物的时空表达模式。我们发现胶原 I、纤调蛋白和肌腱调蛋白在整个肌腱中表达,而腱糖蛋白 C、核心蛋白聚糖和软骨寡聚蛋白在此期间集中在插入部位。我们还确定了在整个发育中的肌腱中被激活的信号通路,例如转化生长因子-β和骨形态发生蛋白,以及在插入部位特异性激活的信号通路,例如 hedgehog 通路。使用在所有肌腱细胞中表达绿色荧光蛋白的小鼠系,我们还发现肌腱细胞的增殖在胎晚期达到最高水平,并且在出生后 2 周下降到非常低的水平。这些数据将允许对肌腱细胞发育中特定信号通路的功能分析及其在体外组织工程研究中的应用。