Suppr超能文献

正常发育过程中小鼠髌腱中分子标记物和细胞信号的时空表达。

Spatial and temporal expression of molecular markers and cell signals during normal development of the mouse patellar tendon.

机构信息

Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.

出版信息

Tissue Eng Part A. 2012 Mar;18(5-6):598-608. doi: 10.1089/ten.TEA.2011.0338. Epub 2011 Nov 9.

Abstract

Tendon injuries are common clinical problems and are difficult to treat. In particular, the tendon-to-bone insertion site, once damaged, does not regenerate its complex zonal arrangement. A potential treatment for tendon injuries is to replace injured tendons with bioengineered tendons. However, the bioengineering of tendon will require a detailed understanding of the normal development of tendon, which is currently lacking. Here, we use the mouse patellar tendon as a model to describe the spatial and temporal pattern of expression of molecular markers for tendon differentiation from late fetal life to 2 weeks after birth. We found that collagen I, fibromodulin, and tenomodulin were expressed throughout the tendon, whereas tenascin-C, biglycan, and cartilage oligomeric protein were concentrated in the insertion site during this period. We also identified signaling pathways that are activated both throughout the developing tendon, for example, transforming growth factor beta and bone morphogenetic protein, and specifically in the insertion site, for example, hedgehog pathway. Using a mouse line expressing green fluorescent protein in all tenocytes, we also found that tenocyte cell proliferation occurs at highest levels during late fetal life, and declines to very low levels by 2 weeks after birth. These data will allow both the functional analysis of specific signaling pathways in tenocyte development and their application to tissue-engineering studies in vitro.

摘要

肌腱损伤是常见的临床问题,且难以治疗。特别是,一旦肌腱-骨插入部位受损,其复杂的区域排列就不会再生。一种治疗肌腱损伤的潜在方法是用生物工程肌腱替代受损的肌腱。然而,肌腱的生物工程将需要详细了解肌腱的正常发育,而目前这方面的知识还很缺乏。在这里,我们使用小鼠髌腱作为模型,描述了从胎晚期到出生后 2 周肌腱分化的分子标记物的时空表达模式。我们发现胶原 I、纤调蛋白和肌腱调蛋白在整个肌腱中表达,而腱糖蛋白 C、核心蛋白聚糖和软骨寡聚蛋白在此期间集中在插入部位。我们还确定了在整个发育中的肌腱中被激活的信号通路,例如转化生长因子-β和骨形态发生蛋白,以及在插入部位特异性激活的信号通路,例如 hedgehog 通路。使用在所有肌腱细胞中表达绿色荧光蛋白的小鼠系,我们还发现肌腱细胞的增殖在胎晚期达到最高水平,并且在出生后 2 周下降到非常低的水平。这些数据将允许对肌腱细胞发育中特定信号通路的功能分析及其在体外组织工程研究中的应用。

相似文献

1
Spatial and temporal expression of molecular markers and cell signals during normal development of the mouse patellar tendon.
Tissue Eng Part A. 2012 Mar;18(5-6):598-608. doi: 10.1089/ten.TEA.2011.0338. Epub 2011 Nov 9.
2
A role for hedgehog signaling in the differentiation of the insertion site of the patellar tendon in the mouse.
PLoS One. 2013 Jun 10;8(6):e65411. doi: 10.1371/journal.pone.0065411. Print 2013.
3
The paratenon contributes to scleraxis-expressing cells during patellar tendon healing.
PLoS One. 2013;8(3):e59944. doi: 10.1371/journal.pone.0059944. Epub 2013 Mar 26.
5
Stepwise Differentiation of Mesenchymal Stem Cells Augments Tendon-Like Tissue Formation and Defect Repair In Vivo.
Stem Cells Transl Med. 2016 Aug;5(8):1106-16. doi: 10.5966/sctm.2015-0215. Epub 2016 Jun 8.
7
Hypoxia-mediated efficient expansion of human tendon-derived stem cells in vitro.
Tissue Eng Part A. 2012 Mar;18(5-6):484-98. doi: 10.1089/ten.TEA.2011.0130. Epub 2011 Oct 26.
8
Effect of platelet mediator concentrate (PMC) on Achilles tenocytes: an in vitro study.
BMC Musculoskelet Disord. 2016 Jul 22;17:307. doi: 10.1186/s12891-016-1160-2.
9
Decorin expression is important for age-related changes in tendon structure and mechanical properties.
Matrix Biol. 2013 Jan;32(1):3-13. doi: 10.1016/j.matbio.2012.11.005. Epub 2012 Nov 23.

引用本文的文献

2
Viable tendon neotissue from adult adipose-derived multipotent stromal cells.
Front Bioeng Biotechnol. 2024 Jan 8;11:1290693. doi: 10.3389/fbioe.2023.1290693. eCollection 2023.
3
Targeting the hedgehog signaling pathway to improve tendon-to-bone integration.
Osteoarthritis Cartilage. 2023 Sep;31(9):1202-1213. doi: 10.1016/j.joca.2023.04.013. Epub 2023 May 3.
4
RAB23 regulates musculoskeletal development and patterning.
Front Cell Dev Biol. 2023 Feb 23;11:1049131. doi: 10.3389/fcell.2023.1049131. eCollection 2023.
5
CD206+ tendon resident macrophages and their potential crosstalk with fibroblasts and the ECM during tendon growth and maturation.
Front Physiol. 2023 Feb 22;14:1122348. doi: 10.3389/fphys.2023.1122348. eCollection 2023.
6
Targeted conditional collagen XII deletion alters tendon function.
Matrix Biol Plus. 2022 Oct 7;16:100123. doi: 10.1016/j.mbplus.2022.100123. eCollection 2022 Dec.
8
Growth and mechanobiology of the tendon-bone enthesis.
Semin Cell Dev Biol. 2022 Mar;123:64-73. doi: 10.1016/j.semcdb.2021.07.015. Epub 2021 Aug 3.
9
Fibronectin fibril alignment is established upon initiation of extracellular matrix assembly.
Mol Biol Cell. 2021 Apr 15;32(8):739-752. doi: 10.1091/mbc.E20-08-0533. Epub 2021 Feb 24.

本文引用的文献

1
What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective.
Tissue Eng Part B Rev. 2011 Jun;17(3):165-76. doi: 10.1089/ten.TEB.2010.0662. Epub 2011 Mar 21.
2
The Mohawk homeobox gene is a critical regulator of tendon differentiation.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10538-42. doi: 10.1073/pnas.1000525107. Epub 2010 May 24.
7
Expression of transforming growth factor beta isoforms and their roles in tendon healing.
Wound Repair Regen. 2008 May-Jun;16(3):399-407. doi: 10.1111/j.1524-475X.2008.00379.x.
8
Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy.
Development. 2008 Jun;135(11):1947-56. doi: 10.1242/dev.018044. Epub 2008 Apr 23.
9
Tendinopathy--from basic science to treatment.
Nat Clin Pract Rheumatol. 2008 Feb;4(2):82-9. doi: 10.1038/ncprheum0700.
10
Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model.
J Shoulder Elbow Surg. 2007 Sep-Oct;16(5 Suppl):S198-203. doi: 10.1016/j.jse.2007.04.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验