Scientific and Statistical Computing Core, National Institute of Mental Health, National, Institutes of Health, Bethesda, MD 20892-1148, USA.
Neuroimage. 2012 Aug 15;62(2):768-73. doi: 10.1016/j.neuroimage.2011.09.016. Epub 2011 Sep 17.
Surface-based brain imaging analysis offers the advantages of preserving the topology of cortical activation, increasing statistical power of group-level statistics, estimating cortical thickness, and visualizing with ease the pattern of activation across the whole cortex. SUMA is an open-source suite of programs for performing surface-based analysis and visualization. It was designed since its inception to allow for a fine control over the mapping between volume and surface domains, and for very fast and simultaneous display of multiple surface models and corresponding multitudes of datasets, all while maintaining a direct two-way link to volumetric data from which surface models and data originated. SUMA provides tools for performing spatial operations such as controlled smoothing, clustering, and interactive ROI drawing on folded surfaces in 3D, in addition to the various level-1 and level-2 FMRI statistics including FDR and FWE correction for multiple comparisons. In our contribution to this commemorative issue of Neuroimage we touch on the importance of surface-based analysis and provide a historic backdrop that motivated the creation of SUMA. We also highlight features that are particular to SUMA, notably the standardization procedure of meshes to greatly facilitate group-level analyses, and the ability to control SUMA's graphical interface from external programs making it possible to handle large collections of data with relative ease.
基于表面的脑成像分析具有保留皮质激活拓扑结构、增加组水平统计的统计效力、估计皮质厚度以及轻松可视化整个皮质激活模式的优势。SUMA 是一个用于进行基于表面的分析和可视化的开源程序套件。从一开始,它就被设计为允许对体积和表面域之间的映射进行精细控制,并且能够非常快速地同时显示多个表面模型和相应的大量数据集,同时保持与从中衍生出表面模型和数据的体积数据的直接双向链接。SUMA 提供了在 3D 中对折叠表面进行空间操作的工具,例如受控平滑、聚类和交互式 ROI 绘制,此外还提供了各种一级和二级 fMRI 统计信息,包括用于多重比较的 FDR 和 FWE 校正。在我们为《神经影像学》本期纪念特刊所做的贡献中,我们探讨了基于表面的分析的重要性,并提供了激发 SUMA 创建的历史背景。我们还强调了 SUMA 的特定功能,特别是网格的标准化程序,这极大地促进了组水平分析,以及从外部程序控制 SUMA 的图形界面的能力,这使得处理大量数据变得相对容易。