Laboratory for Molecular Electronics and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Belgium.
Nanomedicine. 2012 Jul;8(5):559-68. doi: 10.1016/j.nano.2011.09.004. Epub 2011 Sep 21.
Magnetic-plasmonic nanoparticles, combining magnetic and plasmonic components, are promising structures for use in life sciences. Optical properties of core-shell magnetite-gold nanostructures, such as the wavelength of the plasmon resonance, the extinction cross-section, and the ratio of scattering to absorption at the plasmon wavelength are critical parameters in the search for the most suitable particles for envisioned applications. Using Mie theory and the discrete dipole approximation (DDA), optical spectra as a function of composition, size, and shape of core-shell nanospheres and nanorods were calculated. Calculations were done using simulated aqueous media, used throughout the life sciences. Our results indicate that in the advantageous near-infrared region (NIR), although magnetic-plasmonic nanospheres produced by available chemical methods lack the desirable tunability of optical characteristics, magnetic-plasmonic nanorods can achieve the desired optical properties at chemically attainable dimensions. The presented results can aid in the selection of suitable magnetic-plasmonic structures for applications in life sciences.
In this basic science study, magnetic-plasmonic nanoparticles are studied for future applications in life sciences. Optical properties of core-shell magnetite-gold nanostructures, such as the wavelength of the plasmon resonance, the extinction cross-section, and the ratio of scattering to absorption at the plasmon wavelength are critical parameters in the search for the most suitable particles for proposed future applications.
将磁性和等离子体组件结合在一起的磁性等离子体纳米粒子,是应用于生命科学的有前途的结构。核壳型磁铁矿-金纳米结构的光学性质,例如等离子体共振的波长、消光截面以及等离子体波长处的散射与吸收的比值,是寻找最适合预期应用的粒子的关键参数。本文使用 Mie 理论和离散偶极子近似(DDA),计算了核壳纳米球和纳米棒的组成、尺寸和形状的光学光谱。计算是在模拟的水相介质中进行的,该介质在整个生命科学中都有使用。我们的结果表明,在有利的近红外(NIR)区域中,尽管可用的化学方法制备的磁性等离子体纳米球缺乏理想的光学特性可调性,但磁性等离子体纳米棒可以在化学可达到的尺寸上实现所需的光学特性。本文的研究结果有助于选择适合生命科学应用的磁性等离子体结构。
在这项基础科学研究中,研究了磁性等离子体纳米粒子,以用于未来在生命科学中的应用。核壳型磁铁矿-金纳米结构的光学性质,例如等离子体共振的波长、消光截面以及等离子体波长处的散射与吸收的比值,是寻找最适合预期应用的粒子的关键参数。