Obolensky O I, Doerr T P, Ogurtsov A Y, Yu Yi-Kuo
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894.
Europhys Lett. 2016;116(2). doi: 10.1209/0295-5075/116/24003. Epub 2016 Nov 25.
We calculate the polarization portion of electrostatic interactions at the atomic scale using quantum mechanical methods such as density functional theories (DFT) and the coupled cluster approach, and using classical methods such as a surface charge method and a polarizable force field. The agreement among various methods is investigated. Using the coupled clusters method CCSD(T) with large basis sets as the reference, we find that for systems comprising two to six atoms and ions in S-states the classical surface charge method performs much better than commonly used DFT methods with moderate basis sets such as B3LYP/6-31G(d,p). The remarkable performance of the classical approach comes as a surprise. The present results indicate that the use of a rigorous formalism of classical electrostatics can be better justified for determining molecular interactions at intermediate distances than some of the widely used methods of quantum chemistry. PACS numbers: 41.20.Cv,32.10.Dk, 87.10.Tf.
我们使用量子力学方法(如密度泛函理论(DFT)和耦合簇方法)以及经典方法(如表面电荷方法和可极化力场)来计算原子尺度下静电相互作用的极化部分。研究了各种方法之间的一致性。以使用大基组的耦合簇方法CCSD(T)作为参考,我们发现对于包含处于S态的两到六个原子和离子的系统,经典表面电荷方法的表现比常用的中等基组DFT方法(如B3LYP/6-31G(d,p))要好得多。经典方法的出色表现令人惊讶。目前的结果表明,对于确定中等距离下的分子相互作用,使用经典静电学的严格形式比一些广泛使用的量子化学方法更具合理性。物理和化学主题分类编号:41.20.Cv、32.10.Dk、87.10.Tf。