Ji Shuang, Peng Limin, Cheng Yu, Lai HuiChuan
Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA.
Biometrics. 2012 Mar;68(1):101-12. doi: 10.1111/j.1541-0420.2011.01667.x. Epub 2011 Sep 27.
Double censoring often occurs in registry studies when left censoring is present in addition to right censoring. In this work, we propose a new analysis strategy for such doubly censored data by adopting a quantile regression model. We develop computationally simple estimation and inference procedures by appropriately using the embedded martingale structure. Asymptotic properties, including the uniform consistency and weak convergence, are established for the resulting estimators. Moreover, we propose conditional inference to address the special identifiability issues attached to the double censoring setting. We further show that the proposed method can be readily adapted to handle left truncation. Simulation studies demonstrate good finite-sample performance of the new inferential procedures. The practical utility of our method is illustrated by an analysis of the onset of the most commonly investigated respiratory infection, Pseudomonas aeruginosa, in children with cystic fibrosis through the use of the U.S. Cystic Fibrosis Registry.
在登记研究中,当除了右删失还存在左删失时,双重删失经常会出现。在这项工作中,我们通过采用分位数回归模型,针对此类双重删失数据提出了一种新的分析策略。我们通过适当地利用嵌入的鞅结构,开发了计算简单的估计和推断程序。为所得估计量建立了渐近性质,包括一致相合性和弱收敛性。此外,我们提出了条件推断来解决与双重删失设置相关的特殊可识别性问题。我们进一步表明,所提出的方法可以很容易地适用于处理左截断。模拟研究证明了新推断程序具有良好的有限样本性能。通过使用美国囊性纤维化登记处的数据,对囊性纤维化患儿中最常研究的呼吸道感染——铜绿假单胞菌感染的发病情况进行分析,说明了我们方法的实际效用。